It happens that my house in the West Highlands of Scotland is close to a railway line – the West Highland Line – on which an extremely famous preserved steam train runs twice a day in the summer months. Sometimes I pass the train when I’m driving to the shops and a wonderful, evocative smell enters the car, a smell that is a cocktail of hot oil, composed, no doubt, of a variety of hydrocarbons, sulfur compounds, soot, steam and hot metal. In the way of smells it brings back a host of memories, from my school days and from the earliest part of my research career.

Long ago, when I went to school in southeast London by electric commuter train, all the long-distance trains were pulled by steam locomotives. They would thunder through the stations with a splendid clanking of coupling rods, leaving behind that marvellous smell. When stationary they hissed and gurgled, the safety valve sometimes let off a fearsome jet of steam, and they gave off warmth, like a living thing. The school rugby field backed onto an embankment along which travelled the boat trains between London and Paris. The luxury Pullman express, the Golden Arrow – the Flèche d’Or – passed once a day. The locomotive was polished until it shone, the boiler bore a giant golden arrow and the crossed flags of Britain and France fluttered bravely above the buffer-beam. It was simply magnificent. The Second World War had ended only seven years before and the Golden Arrow marked the beginning of a return to a world of affluence and international travel that today we take for granted.

The steam train in the Highlands (Fig. 1) is officially called The Jacobite, after the unsuccessful Jacobite uprising in 1745, the last civil insurrection experienced by the United Kingdom, an insurrection supported, as it happens, by France. Supporters of the uprising gathered at Glenfinnan, near where the viaduct now stands. In recent years, however, both train and viaduct have become internationally famous for another reason. It is not any old train, and the viaduct in is no ordinary viaduct. It is the Harry Potter train on the Harry Potter viaduct! Fans come from all over the world to worship. It featured in three of the Harry Potter films, most notably in Harry Potter and the Chamber of Secrets, in which Ron Weasley flies a Ford Anglia through those graceful arches and eventually lands on the track. The film made US$900 million at the box office. The curved viaduct is a historic piece of engineering in its own right. It was constructed by Robert McAlpine & Sons, of Glasgow, between July 1987 and October 1898, for a mere £18,904 (US$32,137 at today’s exchange rate). Each of its 21 arches has a 15 m span and the highest stand 30 m above the valley floor. A cheap film prop, with hindsight.

The smell of hot, oily metal also reminds me of the early part of my career, which started with a post-doc position at Manchester University where W. S. MacKenzie was setting up a new experimental petrology (XP) laboratory. The research position was not strictly in XP but Mac soon had me learning the ropes, which got me a permanent job, after only one year, at Aberdeen University, where I was given the task of setting up a small XP lab of my own. We didn’t have much money, so a technician and I built a water-pressurized cold-seal system from scratch, including making all the valves and an intensifier. He did the machining and I did the electrical bits. The primary source of pressure was an ordinary car jack, and with a little help from Boyle’s Law we could get up to 4 kbar. It worked well; nobody was blown up or electrocuted. But XP labs, like steam engines, always have a sense of brooding threat. The rows of furnaces gave off a lot of heat and there was that hot-metal smell and sometimes the hiss of steam, only recently supercritical, from leaky joints. Mercury-filled rocker switches made a rhythmic, gentle plopping sound as they responded to the thermocouples, and the mechanical temperature recorder creaked as it obediently typed the temperature in each bomb onto a paper roll. As with locomotives, the lab felt as though it was a living thing.

The work of early experimentalists is always an interesting read. Day and Allen (1905) set out to study the thermal behavior of some of the simple rock-making minerals by a trustworthy method, then the conditions of equilibrium for simple combinations of these, and thus to reach a sound basis for the study of rock formation or differentiation from the magma. No small task! They aimed to study melting and crystallization by observing ‘absorption or release of heat...recorded as breaks in a smooth curve [of heating or cooling]’. They began with the feldspar microcline and found ‘not the slightest trace’ of a change in the rate of heating of the dry crystalline powder, which they ‘prodced from time to time with a stout platinum wire to ascertain its condition’. Somewhat unluckily (their words), they had, as we now know, started their epic research programme with a mineral that melts exceptionally slowly in the absence of water. They were also unaware that K-feldspar melts incongruently to leucite + liquid.

Once they got to 1300°C, their charge had become ‘a viscous liquid which could be drawn out in glassy, almost opaque threads by the wire’. So they cooled this ‘melted orthoclase’ and tried to get it to recrystallize. Nothing happened. They tried adding crushed feldspar; they ‘applied successive quick shocks to the cooling liquid for several hours with an electric hammer below the crucible’; they

see-sawed the temperature; they circulated air, water vapor and CO₂ through the charge; and finally (in desperation?) they ‘introduced a rapid alternating current sent directly through the substance while cooling, but no trace of crystallization resulted’.

Wisely, Day and Allen changed direction and made a series of entirely synthetic plagioclases, in which context they discuss the melting interval of isomorphous series and illustrate how the compositions of liquids and crystals can be found by finding the common tangents to intersecting free energy curves, a construction proposed by van Alkemade in 1893. Day and Allen’s synthetic plagioclases were used by N. L. Bowen (1913) to produce what many of us would see as the foundation work of modern XP (Fig. 2). Bowen’s great leap forward was to introduce the ‘method of sudden quenching’, which he achieved by dropping the charge into a dish of mercury at room temperature. Don’t tell ‘elf and safety’!

A curious feature of Bowen’s famous diagram is that the solidus between end-member anorthite and the point at 67 mol% albite is, within errors, perfectly straight. This is hard to achieve using Alkemade’s construction. If you have an opinion about why this is so, please send me an ‘owl’!

Ian Parsons (ian.parsons@ed.ac.uk)
University of Edinburgh, UK

2 Bowen NL (1913) The melting phenomena of the plagioclase feldspars. American Journal of Science 35: 577-599

Figure 2 Norman L. Bowen’s famous phase diagram (1913) for the plagioclase feldspars at atmospheric pressure. Reprinted by permission of the American Journal of Science.
ICP Sample Introduction Solutions for Geochemistry

from the leader in fluoropolymer manufacturing

Savillex Corporation has been proudly serving the geochemistry community for over 35 years. Our fluoropolymer labware products are used throughout the world for sample digestion, separations, storage and many other applications. We understand the unique needs of geochemists and now our new line up of ICP-OES and ICP-MS sample introduction products combine the highest performance and the lowest metal background with the ruggedness and reproducibility required for routine analysis.

All of our ICP sample introduction products are designed, molded and tested in house, using only the highest purity grade PFA resins.

“Geochemistry would not be where it is today if it were not for Savillex Corporation.”
– Dr. Mike Cheatham, Syracuse University

Nebulizers – C-Flow

• C-Flow microconcentric PFA nebulizer range with the narrowest uptake rate specification
• New C-Flow 35 with uptake rate of 35uL/min +/-7uL/min
• C-Flow range for desolvators – standard fitment on the CETAC Aridus II
• C-Flow 700d with removable uptake line for high solids applications – up to 25% TDS
• All C-Flows can be backflushed without tools

Inert Kits

• PFA kits with Scott type chamber
• True double pass design gives lower RSDs
• O-ring free end cap
• Platinum or sapphire injectors
• Available for Agilent 7500/7700/8800 and Thermo Element 2/Neptune

NEW!

Purillex™ FEP and PFA Bottles

• Lowest metal background
• Highest seal integrity
TENURE-TRACK FACULTY POSITION IN GEOPHYSICS
AT THE UNIVERSITY OF CALGARY

Applications are invited for a tenure-track initial term position at the Instructor-rank in the Department of Geoscience. This position has a teaching-focused role and is part of an ongoing effort to improve the experience of undergraduate students through student engagement and student learning primarily in the area of geophysics. The successful applicant will have an advanced degree in geoscience (PhD or equivalent expected) and a desire to achieve teaching excellence and pedagogical and curricular development within an academic setting. All candidates who consider themselves passionate and adaptable with respect to teaching across a variety of geophysical disciplines (see http://www.geoscience.ucalgary.ca/courses for reference to courses) are welcome to apply.

Known as Canada’s energy capital, Calgary is a bustling city of more than 1.2 million, located near the foothills of the Canadian Rocky Mountains. The University of Calgary is a global intellectual hub where students thrive in programs made rich by research and hands-on experiences. The Department of Geoscience is one of the largest geoscience departments in North America, with comprehensive undergraduate and graduate programs recognized for excellence world-wide and research strengths in energy and environmental geoscience.

Applications must include a cover letter indicating your qualifications for the position, a curriculum vitae, a maximum two-page statement of teaching philosophy including a list of courses that the candidate would like to teach, and the complete contact information of three referees. Appointment will be within the Instructor stream, with a 12-month salary commensurate with experience (see Collective Agreement at http://www.tucfa.com/?page_id=111). Review of applications will commence on September 12, 2014 and continue until the position is filled.

Applications should be sent to:
Prof. Charles Henderson, Head, Department of Geoscience
University of Calgary, 2500 University Drive
Calgary, AB, CANADA T2N 1N4
Fax: (403) 284-0074
Email: cmhender@ucalgary.ca

All qualified candidates are encouraged to apply and excellence will be the primary decision criterion; however, in accordance with Canadian immigration requirements, preference will be given to Canadian citizens and permanent residents of Canada. The University of Calgary respects, appreciates, and encourages diversity.

RARE MINERALS FOR RESEARCH

FROM our inventory of over 200,000 specimens, we can supply your research specimen needs with reliably identified samples from worldwide localities, drawing on old, historic pieces as well as recently discovered exotic species. We and our predecessor companies have been serving the research and museum communities since 1950. Inquiries by email recommended.

Hydrocarbon variety Gilsonite from the Bonanza Vein, Uintah Co., Utah. The sample is 5 cm across. Excalibur Mineral Corp. specimen and image

Excalibur Mineral Corp.
1000 North Division St. Peekskill, NY 10566 USA
Telephone: 914-739-1134; Fax: 914-739-1257
www.excaliburmineral.com | email: info@excaliburmineral.com