THAT UNTRAVELL’D WORLD

All experience is an arch wherethro’
Gleams that untravell’d world whose margin fades
For ever and forever when I move.

Alfred, Lord Tennyson, “Ulysses”

One of the most dispiriting features of international air travel, apart from the lack of space and idiotic reclinable seats in cattle-class, is the almost total lack of interest by the passengers (or ‘customers’ as the airlines call us) in what is visible outside the windows. The majority seem perfectly happy to sit in a darkened metal tube, watching dull movies on tiny screens through head-phones with lousy sound while our wonderful planet glides past, unnoticed some 35,000 feet below. I am an inveterate looker-out-of-windows. Why are they not thrilled by their world? The enormous empty regions of the Earth captivate me. Two-hundred years ago most were untravelled worlds to Europeans. Today, we thunder effortlessly across them without a thought for the dogged heroism and drive that went in to their exploration.

The chart (Fig. 1) is part of one that hangs beside the staircase in my house. It is labelled ‘Chart, illustrating the remarks of Mr. Findlay on the probable course pursued by Sir John Franklin’s expedition’ and was published in 1856 by the Royal Geographical Society.

The Franklin expedition is the most famous disaster in Arctic exploration. Franklin left England in 1845 with two well-equipped ships, Erebus and Terror, with the objective of finding a route through the last unexplored parts of the north-west passage. By 1848, he and his 128 men were all dead, the mode of their loss and the whereabouts of their ships a mystery. The red line on the chart purports to show the ‘Probable route of the expedition’, and the blue line ‘Drift of vessels and track of survivors’. Off the chart, the blue line can be traced down the coast of Labrador to a point on the edge of the Grand Banks, near Newfoundland, where there is an annotation: ‘Erebus and Terror on the ice. Seen by Renovation April 20, 1851’.

My Parting Shots photograph is, I freely admit, not very good (Fig. 2). But that is not the point: the point is that it reminds me of where I was. It was taken in July 2008 on a flight from Heathrow (London, UK) to Vancouver (Canada), to attend the Goldschmidt conference. We followed a great-circle that took us over Disko Bay on the west coast of Greenland, over the mountain ranges of northern Baffin Island and then into the vast, intricate, low-lying spaces of the Canadian Arctic archipelago. To the south, I saw the Fury and Hecla Strait, between Baffin and the Melville Peninsula, first seen by Sir William Parry in 1822 but impenetrable because of ice, as it often is to this day. Further west, we crossed the southern end of the Boothia Peninsula, the northernmost point of mainland America. The peninsula was named after Felix Booth, a member of a family made wealthy by the sale of Booth’s London Dry Gin, a brand still going strong. He funded Sir John Ross’s expedition of 1829 in search of the north-west passage. Hence the strange name ‘Boothia Felix’ found on the chart. John was the uncle of James Clark Ross, who was also on the 1829 expedition. James was the first to visit the North Magnetic Pole. ‘Mag Pole’ is marked on the chart just below ‘Boothia Felix’. John Ross was frozen-in for four years near the most easterly point of Boothia where he found a large Inuit community living in igloos, which he charmingly called ‘snow cottages’.

Continuing west, we crossed King William Island. It was there I took my picture of a desolate, low-lying, muddy island with many small lakes, enlivened by ‘patterned ground’, stone polygons picked out by snow, a sure indicator of permafrost. Most of the Franklin tragedy unfolded on or near this ineffably bleak land.

Cont’d on page 152
What a moment to enjoy from 35,000 feet at 600 miles per hour! A great deal of research, often contradictory, has been done on the fate of the expedition, much of it driven in early days by the determination of Franklin’s wife, Jane, to find her husband. In 1850, no less than eleven British and two American ships were in the area. The first relics of the expedition, including the graves of three crewmen, were found on Beechey Island, at the southwest corner of North Devon Island. In 1854, the great Scottish explorer John Rae (see Elements 2013, v9n4) found remains from the expedition on the mainland coast, south-east of King William Island (K. William Land on the chart), and was told stories about Franklin by the Inuit people, whose language Rae spoke. Gradually, a picture of the fate of the men has emerged, including the view, from forensic analysis of corpses, that lead (Pb) from tinned food was a major factor in their decline.

It is generally agreed that Erebus and Terror became stuck fast in the ice north-west of King William Island, but their ultimate fate has remained obscure. To my surprise and delight, I discovered, when researching this article, that on September 18, 2014, divers working for Parks Canada confirmed that a wreck found in Queen Maud Gulf, west of O’Reilly Island (at the bottom of the chart in Fig. 1) was one of Franklin’s ships. On October 1, 2014, the Canadian Prime Minister, Stephen Harper, spoke these words during Question Period in Parliament: ‘I am delighted to confirm that we have identified which ship from the Franklin expedition has been found. It is in fact, the HMS Erebus.’ So much for the sighting by Renovation of both ships on ice near the Grand Banks in 1851!

Ian Parsons (ian.parsons@ed.ac.uk)
University of Edinburgh

DEPARTMENT OF EARTH SCIENCES
(Mineralogy, Metamorphic Petrology, Structural Geology)

ASSISTANT PROFESSOR
(Applications will be considered until the position has been filled)

The Department of Earth Sciences at Carleton University invites applications from qualified candidates for a two-year term appointment in mineralogy, metamorphic petrology, and structural geology, at the rank of Assistant Professor, beginning September 1, 2015. The candidate will be expected to teach courses in mineralogy, metamorphic petrology, and structural geology at the second- and third-year levels, and to co-supervise undergraduate Honours student research projects and independent studies. The position requires a Ph.D., with evidence of research in a field related to mineralogy, metamorphic petrology, structural geology, or economic geology, evidence of expertise in field geology, and evidence or demonstrated potential for excellence in teaching.

Information about the undergraduate programs of the Department of Earth Sciences and the link to an extended job advertisement may be obtained at www.eearthsci.carleton.ca. The Departments of Earth Sciences and Geography, at both Carleton University and the University of Ottawa, form the Ottawa-Geoscience Centre, a collaborative research and graduate institution with a wide range of research facilities.

Please send your application, electronically in one single PDF file, to: Dr. Sharon Carr, Chair, Department of Earth Sciences, 2125 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6. Fax: 613-520-5613. Email: Chair_EarthSciences@carleton.ca. Applications should include a curriculum vitae, a cover letter, a teaching dossier with a statement of teaching philosophy, a statement outlining current and future research interests, and the names and addresses (including e-mail addresses) of three referees. Please indicate in your application if you are legally entitled to work in Canada.

Carleton University is strongly committed to fostering diversity within its community as a source of excellence, cultural enrichment, and social strength. We welcome those who would contribute to the further diversification of our University including, but not limited to: women; visible minorities; First Nations, Inuit and Métis peoples; persons with disabilities; and persons of any sexual orientation or gender identity and expressions.

All qualified candidates are encouraged to apply. Canadians and permanent residents will be given priority. All positions are subject to budgetary approval.