The first year of publication by open access has been finished with volume 32 of the European Journal of Mineralogy (EJM). Some statistics may help to see where we are right now. Altogether, 53 papers were published. Based on the extrapolation of the current submission rate, we can expect many more papers in 2021. Acceptance was 75%, and the time between the final decision by the editorial board and publication of an article decreased to a median value of 26 days—a significant improvement! Reviewers needed, on average, three weeks to submit their reviews (i.e., the required time in the editorial system), and, considering the time needed to write a thoughtful review, we should not demand shorter periods. Some 62% of the papers are from members of the owning or associated national societies (those of Spain, France, Italy, Germany, and the European Association of Geochemistry), and currently for 2021 this is in the same order of magnitude. The EJM is a truly international journal: 22 countries are mentioned in the article affiliations, with first authors from Germany and Italy (16% each), China (11%), France and Russia (9% each), and the USA (6%).

Attention PhD students! There is a special offer for PhD students who are members of the DMG. For one paper from your PhD thesis, the DMG will sponsor the article-processing charges (APCs). The procedure is simple: once your paper is accepted, please pay the APCs and send us the receipt together with a confirmation letter from your advisor that you are a PhD student. And some additionally important information for everyone: Copernicus will directly ask your university/institution, when you submit your paper, for the charges; many institutions will have a contract by which the APCs are paid.

A forthcoming special issue of the EJM will be entitled “Mineralogy of the Built Environment” and will be edited by Carlos Rodríguez-Navarro, Gilberto Artioli, Maria Chiara Dalconi, and Kerstin Elert. Submissions commenced on 1 April 2021 and will remain open until 1 April 2022. The study of materials used in the built environment has long attracted significant research efforts and has only grown in popularity over the last few decades. Mineralogy has been pivotal in these studies, from the analysis of the different mineral components of natural stone and earthen structures, the composition of man-made plasters, mortars, cements, and ceramics (bricks), to the weathering and conservation of the aforementioned materials. Studies should focus on both traditional and novel materials used in the protection and conservation of built heritage, including, but not limited to, lime-, silica-, oxalate-, and phosphate-based materials (e.g., nanolimes and alkoxysilanes). We seek studies that have a focus on the following:

- The analysis of natural and man-made building materials. In particular, studies on the analysis of minerals/phases of different building materials, the phase evolution in cementitious materials (e.g., during processing and setting of lime mortars, gypsum plaster, or cement/concrete), and ceramics (e.g., phase evolution during firing of bricks).
- Mineralogical changes that occur during physical and chemical weathering, as well as during biodeterioration. In particular, the mechanisms that lead to degradation and that involve a phase transformation (e.g., dissolution and precipitation), and/or neof ormation (e.g., salt weathering), and clay-related damage (i.e., swelling and shrinking).

The mineralogical analysis of inorganic conservation materials, their applications, and an evaluation of their effectiveness.

Another new special issue about glass/melt inclusions in igneous and metamorphic rocks is in preparation: the editors will be Elisabetta Rampone, Sylvio Ferreiro, and Marie Edmonds. If you are interested in contributing, please contact the editors or François Holtz for further details.

Gerhard Franz (Berlin)

JOINT DMG–MINERALOGICAL SOCIETY OF AMERICA VIRTUAL SHORT COURSE REPORT

Application of Diffusion Studies to the Determination of Timescales in Geochemistry and Petrology

Short course held 19–23 April 2021 at the Institute for Geology, Mineralogy and Geophysics of the Ruhr University Bochum

Dr Sumit Chakraborty and Dr Ralf Dohmen of the Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum (RUB) (Germany) ran the workshop Application of Diffusion Studies to the Determination of Timescales in Geochemistry and Petrology. This workshop was a great success and ended 23 April after a week of inclusive lectures and practical sessions. Despite being postponed from October 2020 and held virtually on Zoom (due to the COVID-19 pandemic), the organizers still managed to delicately deliver the art of diffusion modeling from top to bottom to a group of 53 participants from 18 countries, including North America, Europe, Asia, South America, and Africa, the participants being at various stages in their careers.

Some of the participants at the joint MSA–DMG shortcourse on diffusion modeling, held on Zoom.

Diffusion chronometry and geospeedometry have been applied to a wide range of igneous and metamorphic systems to obtain timescales which further shed light on the pace of petrological processes. Within the six-hour window of the course each day, the short course started from basic concepts and the mathematics of diffusion and gradually moved to more advanced topics and areas of active research, including multicomponent diffusion and moving boundary conditions. The lecturers also kindly shared their tips and tricks alongside common mistakes they have encountered on diffusion modeling. “Your model is only as good as how well you understand your petrological system” was one of the most critical take-home quotes from Sumit’s lecture. Although easily overlooked, the petrographical and geological contexts are the key sources of information when setting up a model.
Interspersed between lectures were five well-designed practical units that allowed participants to apply the learned concepts and numerical tools to model natural diffusion profiles on their computer. The participants were divided into five groups to facilitate discussion and collaboration; one of the following was responsible for each group: Jennifer Primocerio, Thilo Bissbort, Sampripti Basak, Priyadarshi Chowdhury, Ralf Dohmen. Other than Ralf, all are early career scientists associated with the Bochum group. The practical units started from modeling diffusion profiles using analytical solutions and then finite-difference models in Excel spreadsheets. Then we moved on to create models with composition-dependent diffusivities and learned how to code that in Matlab. The workshop ended on Friday with a big Zoom photo and the lecturers generously providing time for one-on-one discussions.

Although the online setup this year precluded social events – happy hours, networking, and laboratory tours – the workshop still provided an informative and solid introduction for scientists who were interested in applying diffusion chronometry to their research. Special thanks go to the DMG, the MSA, the organization team, and all the teachers from the RUB group for making such a splendid event available during the COVID-19 pandemic.

Kuan-Yu Lin (University of Delaware, USA)