In some ways, olivine has driven the evolution of the Solar System and likely beyond. As one of the earliest-crystallizing silicate minerals, olivine controls the initial chemical evolution of planet-wide magma oceans and individual lava flows alike. In solid aggregate form, it controls and records deformation of the mantle and smaller-scale intrusive complexes. The components of its crystal structure are mobile at high temperatures and their migration can be used to explore the timing of magmatic events. During chemical weathering, these olivine crystals capture carbon dioxide from the atmosphere as secondary minerals are formed. All of these processes take place not only on Earth, but also on other planetary bodies, making olivine ideally suited to shed light on both primordial planet-building processes and current-day volcanism and surface processes.

Keywords: olivine; peridot; mantle; volcano; meteorite; magma differentiation; melt inclusion

Introduction

Creeping in the mantle, melting into a magma, re-crystallizing in a shallow chamber, erupting from a volcano, breaking down in the subsurface, or orbiting in space: olivine is everywhere and sees everything. As such, it has sparked curiosity and fascination throughout human history. In ancient times, olivine seems to have been one of Cleopatra VII’s favorite gemstones, and according to Pliny the Elder, was called “topaz” by the Greeks and Romans when gem-quality crystals were first mined on Zabargad Island (Fig. 1; Revheim 2015). Olivine is even mentioned in the Bible, as “chrysolite,” the seventh precious stone adorning the walls of Jerusalem (Revelations 21:20). This name persisted, joined much later by “peridot,” an appellation that is still used today by gemologists and jewelers. It was only in the 18th century that the term “olivine” was coined by geologist A.G. Werner, after its common olive-green color. All three names—chrysolite, peridot, and olivine—were finally recognized as the same mineral species thanks to the works of R.J. Haüy and followers on crystal structure. Today, the mineral is still prized as a gemstone and is mined in locations as varied as Myanmar, Pakistan, Norway, Vietnam, and the USA, among others. The highest-quality terrestrial crystals are priced at 50–450 US dollars per carat and up to thousands of US dollars per carat for certified extraterrestrial gemstones. Green olivine of structural formula [(Mg,Fe)₂SiO₄] is both widely available (Fig. 2) and possesses desirable physical, mechanical, and thermal properties. As such, olivine-type materials are used in many innovative technologies and applications, including as an industrial acid waste neutralizer, a cement clinker (known as “belite”), a slag conditioner, a refractory brick (or a raw material for their manufacture, with many patents filed by V.M. Goldschmidt in the 1920s and 1930s), a casting sand, a tap hole filler, a coating material, and as a crystal structure of high power density (the so-called lithium iron phosphate batteries). Beyond these many virtues, the potential of olivine intrigues and it has received ever-increasing attention over the years as a focal point for studying planetary processes, tectonic motions, and magma dynamics—making it arguably the most-studied mineral in Earth sciences. Looking through the olivine lens, this issue of Elements presents an array of captivating research.

A Rock Star

Olivine is a fundamental building block in the universe: it is found in a wide range of terrestrial rocks, lunar samples, and meteorites (Fig. 2), and has been detected on Mercury, Venus, Mars, and asteroids as well as in debris disks outside of our own Solar System (Demouchy 2021; First et al. 2023 this issue). As planetesimals accrete to form larger bodies, the kinetic energy of their collisions instigates melt formation and even magma oceans. From there, making olivine is a simple recipe. The mineral is relatively frugal and only needs three to four ingredients from the melt: oxygen, silicon, plus magnesium and/or iron—a not-so-difficult task given that those four elements are among the ten most abundant in the universe and make up over 90% of Earth’s total mass! Thanks to its highly refractory nature and large temperature and pressure stability field (Fig. 3; Bowen and Schairer 1935; Ringwood and Major 1970), olivine would be one of the first minerals to crystallize during subsequent cooling of MgO- and/or FeO-rich silicate melts (e.g.,
olive-green, hydrothermal crystal at Fo 90–92 from Zabargad Island (AZ, USA) made of anhedral olivine grains at Fo 87–92 and enclosed in a hawaiitic matrix. Sample: Kyle Dayton; Photo: Benoît Welsch.

containing large amounts of Fo 83–85 olivine macrocrysts (Welsch et al. 2013) from the April 2007 Piton de la Fournaise eruption (Reunion Island) (Big Island, Hawaii, USA). Sample and photo: Benoît Welsch.

shell and coral (white, brown) fragments from Green Sand Beach of fayalite from Caspar quarry, Ettringen, Germany. Sample: Willi Larsen. (D) Mantle xenolith from San Carlos Apache Reservation (AZ, USA) made of anhedral olivine grains at Fo92–92 and enclosed in a hawaiitic matrix. Sample: Kyle Dayton; Photo: Benoît Welsch.

(E) Olivine-rich basalt (“oceanite” as defined by A.F.A Lacroix) from the April 2007 Piton de la Fournaise eruption (Reunion Island) containing large amounts of Fo93–95 olivine macrocrysts (Welsch et al. 2013); crossed polar microphotograph of a 30-µm thin section. Sample: OVPF/LGSR; Photo: Benoît Welsch.

(F) Long dark blades outlining plate spinifex (A3), Fo91–99 (crossed polar microphotograph of a 30-µm thin section naceous chondrite type CV3) with a composition in the range of divalent cations in two distinct octahedral (i.e., metal, M) sites, denoted M1 and M2 (Fig. 4; Deer et al. 1982). The virtual ubiquity of olivine (Fig. 2) makes it prone to experience a large variety of physical and chemical processes, and studies of its fundamental characteristics have helped to unravel many scientific mysteries. For instance, the parameterization of olivine’s physical properties allowed seismologists to identify peridotites (olivine-rich rocks) as the main component of Earth’s upper mantle based on the propagation and reconstruction of P- and S-waves, corroborating the abundance of olivine in xenoliths in rapidly ascending magmas (e.g., kimberlites). Olivine-rich rocks are an integral part of Earth’s inner workings, as they accommodate mantle motion and continuous sliding of the tectonic plates (see Demouchy et al. 2023 this issue). In the mantle below oceanic ridges, hotspots, and subduction zones, a fraction of these peridotites melt and produce magmas saturated in olivine components. When these magmas ascend and cool on their way to the surface, they reprecipitate olivine again, this time as a building block of plutonic and volcanic rocks in the crust (Ruprecht and Welsch 2023 this issue). The life cycle of olivine, however, ends at the surface when the mineral comes into contact with water over protracted periods of time and gradually loses its structural and chemical integrity (Plümper and Matter 2023 this issue). As it bids farewell, olivine may transform itself into a crucial agent for the emergence of life, along with other key minerals such as bridgmanite, serpentine, and pyrrhotite (e.g., Russell and Ponce 2020). Considering its wide-ranging origins and applications, olivine is at the intersection of many fields of research and interests. Much as Drosophila (the fruit fly) has been instrumental to the biological sciences, so too has olivine become a primary reference in many geological fields: defects and diffusion (Chakraborty 2008), planetary science, spectroscopy, rock mechanics, crystal growth and dissolution, melt inclusion studies, volcano petrology, and more. In many regards, this little green mineral represents an outstanding vessel to reach and explore a variety of environments that would be otherwise inaccessible to scientists. Before diving deeper into the olivine world with the next chapters, we present below an overview of its main characteristics.

STRUCTURE

The periodic arrangement of atoms making up the Bravais lattice of minerals, determined by X-ray diffraction around 100 years ago, can now be viewed directly using transmission electron microscopy (Fig. 4). At the atomic scale, minerals of the olivine group are usually built on a framework of tetrahedron-shaped units made of one central silicon cation Si4+ and four oxygen anions O2− placed at the apices, connected, and brought to neutrality with a pair of divalent cations in two distinct octahedral (i.e., metal, M) sites, denoted M1 and M2 (Fig. 4; Deer et al. 1982). The olivine structure is that of a nesosilicate (formerly known as “orthosilicate”), in which each silicate tetrahedron is independent (“neso” meaning “island” in Greek) and only...
connected to each other by the metal cations—a major difference to the other silicate structures, in which the tetrahedrons are bridged to each other by oxygen anions along specific patterns. In olivine, the smallest portion of the framework that contains the same three-dimensional pattern and that is repeated periodically in the entire crystal is a unit cell of orthorhombic symmetry containing four formula units \((Z)\) of silicate tetrahedrons with their pairs of metal ions (Fig. 4). The orthorhombic symmetry of olivine means that its structure is different when viewed down the three principal axes, described as \(a, b,\) and \(c\). As a note of caution, the structural symmetry of olivine can be described with different space groups, traditionally \(Pbnm\) among geologists and \(Pnma\) among material scientists. This difference implies that the cell parameters are of the type \(a < c < b\) with \(Pbnm\) and \(c < b < a\) with \(Pnma\), which can be at the root of unfortunate indexing and miscommunications, as discussed in Yasutake et al. (2019).

CHEMISTRY

At a scale greater than the unit cell, the compound mixture of formula units forms a complete solid solution between the two pure end-members situated in the M1 and M2 sites (Fig. 4). Olivine crystals of the \([(Mg,Fe)\2 SiO\4]\) series are the most common variety in nature, with forsterite as the magnesium end-member (\([Mg\2 SiO\4]\), noted Fo\100\) and fayalite as the iron end-member \([Fe\2 SiO\4]\), equivalent to Fo\0\). Compound mixtures are graded based on their relative molar fraction in end-member cations (here pure magnesium and pure iron), with the forsterite content (Fo) being traditionally obtained from electron microprobe spot analyses by converting the measured weight percent of the two end-members’ oxides (wt.% MgO, wt.% FeO) into cation mole fraction (\(X_{Mg}/X_{Fe}\) normalized to four oxygens) and calculating Fo as \(Fo = 100 \times X_{Mg}/(X_{Mg} + X_{Fe})\). This term can be also referred as the Mg number (Mg\#), although it is more commonly used for other ferromagnesian, solid
solution minerals (such as pyroxenes and amphibole), and for bulk rock compositions—serving in a similar way to a differentiation and temperature index. As another note of caution, the classic binary phase diagram gives olivine compositions in weight percent Fo–Fa (Fig. 3), which differ from true Fo contents based on molar fraction.

The color intensity of olivine crystals increases with increasing proportion of Fe in its structure, from colorless in pure forsterite to clear brown in pure fayalite, with the intermediate compositions spanning different shades of green (Fig. 1A–1C), and divided in up to six ranges and olivine types (Fig. 2). As an umbrella term for each solid solution series of the olivine group, the term “olivine” itself is not listed as a mineral species by the International Mineralogical Association (IMA; Demouchy 2021), rather only its pure end-members. As shown in Figure 2, the majority of olivine compositions reported in terrestrial rocks are in the range ~Fo 70–96, with forsteritic olivine compositions reported in terrestrial olivine types (Fig. 2). As an umbrella term for each mineral, which concentrates Fe$^{3+}$ in the two O$^{2−}$ being bound by two Fe$^{2+}$, in the [(Mg,Fe)$_2$SiO$_4$] olivine also has the lowest Fe$^{3+}$/Fe ratio of any major ferromagnesian mineral, which concentrates Fe$^{3+}$ in the residual liquid as olivine crystallizes. This drives the melt to higher oxygen fugacity as three O$^{2−}$ are bound by two Fe$^{3+}$, versus two O$^{2−}$ being bound by two Fe$^{2+}$, in the liquid. Depending on the presence of other minerals to buffer this higher oxygen fugacity, planetary bodies that form an olivine mantle may hence render to the surface a flow of oxidized volatiles such as H$^+$ and C$^{4+}$, with CO$_2$ being the main substrate for life (e.g., Russell and Ponce 2020). Because olivine often starts draining down the [100] direction. The 2D-projections of the orthorhombic unit cell appear in green, with Z = 4 the number of formula units within. Atomic structure modeled with VESTA 3 software (Momma et al. 2011), with labels following interactive structures on mindat.org. Scanning transmission electron microscopy (STEM) image collected with the atomic resolution electron microscope (ARM) JEOL JEM-2100F at J2Oef Stefan Institute by Goran Dražić and Nina Daneu. Crystal modeled from Welsch et al. (2013). The Miller indices (hkl) refer to a single crystal face or plane, (hkl) indicate a set of symmetry-equivalent faces or “forms,” [uvw] correspond to a singular direction, and <uvw> are a set of symmetry-equivalent directions.

Figure 3
Binary phase diagram of Mg$_2$SiO$_4$–Fe$_2$SiO$_4$ at 0.1 MPa after Bowen and Schairer (1935). Taking an example of the cooling down of a silicate melt of composition Fo50Fa50, crystallization starts at 1670 °C with Fo81Fa19 olivine (note that those are not the true Fo contents). This melt composition, along with that of the solids, evolves along the curves of the liquidus and solidus, respectively, such as at 1500 °C, the solid fraction is at Fo60Fa40 and makes up 70% of the initial mass for a residual melt at Fo26Fa74 and 30% of the mass (using the lever rule). The liquid would reach complete solidification at ~1430 °C.

Figure 4
Atomic structure of olivine assuming pure forsterite [Mg$_2$SiO$_4$] and viewed parallel to the three principal crystallographic axes a, b, and c, in the Pbnm space group. The ions O$^{2−}$ have been shrunk and the ions Si$^{4+}$ enlarged for visualization; the real ionic radii are Mg$^{2+}$: 0.72 Å; Si$^{4+}$: 0.26 Å; and O$^{2−}$: 1.38 Å. The ions Mg$^{2+}$ occupy all M1 and M2 sites. The atomic structures are determined by X-ray diffraction, but can also be imaged directly using transmission electron microscopy (TEM), where Si$^{4+}$ appears as bright circles and Mg$^{2+}$ as slightly darker spots (looking down the [100] direction). The 2D-projections of the orthorhombic unit cell appear in green, with Z = 4 the number of formula units within. Atomic structure modeled with VESTA 3 software (Momma and Izumi 2011), with labels following interactive structures on mindat.org. Scanning transmission electron microscopy (STEM) image collected with the atomic resolution electron microscope (ARM) JEOL JEM-2100F at J2Oef Stefan Institute by Goran Dražić and Nina Daneu. Crystal modeled from Welsch et al. (2013). The Miller indices (hkl) refer to a single crystal face or plane, (hkl) indicate a set of symmetry-equivalent faces or “forms,” [uvw] correspond to a singular direction, and <uvw> are a set of symmetry-equivalent directions.
CRYSTAL FEATURES

At the micro- to macroscopic scale, an olivine crystal may adopt a wide range of geometrical shapes as a function of its environment of crystallization and storage, from anhedral grains in mantle and crustal peridotites to blades and hybrid growth forms in magmas and lavas (Fig. 1B, 1D–1F, 1H, 1l; Welsch et al. 2013; Demouchy et al. 2023 this issue; Ruprecht and Welsch 2023 this issue). When crystallizing slowly from a silicate melt, its equilibrium habit is polyhedral and can be made by up to 20 faces (16 in Fig. 4): four [110], four [121], four [120], two [010], four [101], and two [001] (see crystallographic nomenclature in Fig. 4’s caption). Olivine can also experience structural errors early during its crystal growth, which leads to simple twinning laws on reflection planes revolving around the a-axis: [021] (formerly identified as [100]), [011], [012], and [031]; Deer et al. 1982; Welsch et al. 2013). Perhaps one of the most important attributes of olivine is that this mineral is a premium target to probe the chemical composition of parental magmas thanks to its high capability to embody pockets of surrounding material comprising melt, fluid, bubbles, and other solids (e.g., spinel, magnetite) and seal them off as inclusions during its crystal growth (e.g., Roedder 1965, 1979). For many decades now, olivine-hosted melt, fluid, and solid inclusions have proven to be powerful tools to constrain the petrogenesis of crystals and rocks that contain them, and to access the chemistry of their past environments (e.g., Clocchiatti et al. 1981; First et al. 2023 this issue; Ruprecht and Welsch 2023 this issue).

LIMITS

Olivine is generally hard (6.5–7 on the Mohs scale) and has poor cleavage in the primary planes [100], [010], and [001] (Deer et al. 1982). Forsteritic olivine is also prone to alteration upon which its color changes to pale green or red-brown as it is replaced by serpentine (a phyllosilicate formed by hydration, see Plümper and Matter 2023 this issue), or iddingsite (a mixture of clay minerals, iron oxides, and ferrihydrites formed through progressive oxidative weathering; Smith et al. 1987), respectively. Alternatively, alteration may affect only the iron contained in olivine, forming hematite, magnetite, and sometimes laihunite by oxidation, turning the crystal dark and opaque (e.g., Martin et al. 2015) and leading the remaining parts to become more enriched in MgO proportionally to FeO (e.g., Plechov et al. 2018).

The density of olivine increases with its Fe content, from 3.3 to 4.4 g/cm³, and its melting point decreases, from 1890 °C in pure forsterite to 1205 °C in pure fayalite in the simple system MgO–FeO–SiO₂ at atmospheric pressure (0.1 MPa, Fig. 3; Bowen and Schairer 1935). In more complex systems, such as terrestrial magmas, the liquidus of olivine is depressed, with upper bounds on the order of 1620 °C in komatiites, 1300 °C in basalts, and 1000 °C in rhyolites, at 0.1 MPa (Martin et al. 2015; Sossi and O’Neill 2016).

OUTLINES

In this issue of Elements, we begin our exploration of olivine with a lattice-scale look at trace element incorporation and migration in Chapter 2 (Jollands et al. 2023). This naturally segues into Chapter 3 (Demouchy et al. 2023), which presents crystal defects and deformation in the most primitive and perhaps fundamental olivine on our own planet, that of Earth’s upper mantle. Studies of element zoning and diffusive timescales are a key component of Chapter 4 (Ruprecht and Welsch 2023), which focuses on magmatic olivine and its ability to preserve information about entire systems from source to surface (P, T, fO₂, composition, etc.) in a way that is useful to volcanologists. After olivine erupts, or is exposed at Earth’s surface by uplift and erosion, it is subject to alteration in our atmosphere and hydrosphere; these interactions capture CO₂ and convert it into solid minerals, providing potential storage for anthropogenic carbon. The fate of olivine in the subsurface and its role in carbon sequestration represents a big question mark in recent studies, as discussed in Chapter 5 (Plümper and Matter 2023). Finally, in Chapter 6 (First et al. 2023), all of the previous topics are applied beyond Earth to understand early Solar System processes, our own Moon and neighboring planets, and potentially exoplanet surfaces and atmospheres across our Galaxy.

ACKNOWLEDGMENTS

We extend our sincere gratitude to the editors, authors, and content creators, who kindly participated in this issue of Elements. We are grateful to Hugh O’Neill and an anonymous reviewer for improving the quality of an earlier version of this manuscript. BW benefited from NSF awards #1650416 and #1902278. ECF was supported by the Heising-Simons foundation via a 51 Pegasi b Fellowship. PR acknowledges NSF awards #1426820 and #2147714.