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Impacts of Large-scale Magmatism 
on Land Plant Ecosystems 

INTRODUCTION
Historical and present-day volcanic eruptions, such as 
the 1783–1784 Laki fissure eruptions, the 1815 Tambora 
eruption, and the 1991 Mount Pinatubo eruption, are testa-
ments to how volcanic activity can cause environmental 
and climatic changes on local to global scales. In these cases, 
it was primarily emissions of sulfur dioxide and volcanic 
ash or dust injected into the stratosphere, which blocked 
incoming solar radiation, that caused climatic deterioration 
in the year(s) following the eruptions, resulting in global 
cooling (Mather 2015). In contrast, the magmatic activity 
of large igneous provinces (LIPs) is known to have emitted 
vast amounts of greenhouse gases (e.g., CO2 and methane) 
as well as sulfur dioxide, halocarbons, and heavy metals, 
which can be traced in the sedimentary record and used as 
proxies for the volcanic activity (e.g., Lindström et al. 2021). 
These volcanic emissions set off a cascade of events that led 
to prolonged intervals (hundreds of thousands of years) 
of global warming, ocean nutrification, anoxia, sea-level 

change, ocean acidification, global 
cooling, wildfires, and introduc-
tion of toxic metals and gases to 
the atmosphere numerous times 
throughout the Phanerozoic. The 
formation of LIPs is contempora-
neous with most mass extinctions 
and smaller-scale biotic crises 
throughout geological time, and 
LIP activity is implicated to have 
contributed to at least three 
(e.g., end-Permian, end-Triassic, 
Cretaceous–Paleogene), if not all, 
of the “Big Five” mass  extinctions 
(Fig. 1). Study of the environ-
mental effects of LIPs improves 
the understanding of the complex 
i nterac t ions bet ween t he 
geosphere, atmosphere, hydro-
sphere, and biosphere, and there-

fore the accuracy of predictions of ecosystem response to 
future change associated with unabated greenhouse gas 
emissions and metal pollution. 

Terrestrial vegetation and ecosystem dynamics are an 
integral part of the global carbon cycle and the composi-
tion and extent of terrestrial vegetation play an important 
role in global climate feedback mechanisms. However, 
compared with the marine fossil record, the influence 
of LIPs on terrestrial ecosystems is not as well under-
stood (Bond and Sun 2021). Extinctions in the animal 
record during major biotic crises in Earth history are not 
mirrored by comparable major changes in land plants 
(Fig. 1). For example, across the largest animal extinction 
event in Earth’s history, the end-Permian event (~251 Ma), 
few plants became extinct globally, even though this was 
arguably the most severe event for land plants (Nowak 
et al. 2019). Major changes in vegetation took place on a 
regional to supra-regional scale and the terrestrial crisis 
was underway several tens to hundreds of thousands of 
years before the marine extinctions (e.g., Hochuli et al. 
2016; Dal Corso et al. 2022 and references therein). For the 
end-Triassic event, vegetation changes may have started 
earlier than the marine extinctions, but the major changes 
in both realms appear to have largely coincided (Lindström 
et al. 2021; Lindström 2021). During both the end-Permian 
and end-Triassic events, ecosystem changes and extinctions 
were protracted over 10s to 100s of thousands of years. In 
contrast, the terrestrial and marine extinctions during 
the Cretaceous–Paleogene event, with the effects of the 
Chicxulub impact, were simultaneous and of comparatively 
short duration (e.g., Vajda and Bercovici 2014). 

T errestrial ecosystems are integral components of global carbon budgets 
and modulators of Earth’s climate. Emplacement of large igneous 
provinces (LIPs) is implicated in almost every mass extinction and smaller 

biotic crises in Earth’s history, but the effects of these and other large-scale 
magmatic events on terrestrial ecosystems are poorly understood. Palynology, 
the study of fossilized pollen and spores, offer a means to robustly reconstruct 
the types and abundance of plants growing on the landscape and their response 
to Earth crises, permitting predictions of the response of terrestrial vegeta-
tion to future perturbations. We review existing palynological literature to 
explore the direct and cumulative impacts of large-scale magmatism, such as 
LIP-forming events, on terrestrial vegetation composition and dynamics over 
geological time.
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Land plants, despite being sedentary organisms, may, as a 
group, be more resistant to mass extinction than animals. 
Since their dawn, land plants have evolved adaptations 
to adverse changes in their environment, which provide 
autoecological (i.e., the way plants interact with the total 
environment) advantages compared with animals. These 
include, for example, highly resistant and dispersable 
resting stages (e.g., resistant seeds), various regenerative 
adaptations such as subterraneous structures, multiple 
reproductive strategies, morphological and reproductive 
adaption to disturbance, complex genomes, and even DNA 
repair mechanisms. Despite the remarkable resilience of 
land plants to adverse changes in the environment, LIPs 
still affected land plant communities in a myriad of ways: 
from the destruction of vegetation by lava flows in their 
immediate surroundings to more widely-distributed 
stressors, such as climate warming from CO2 emissions, 
short-term cooling due to SO2 emissions, sea-level change, 
acid rain, wildfires, photosynthesis inhibition from 

the release of aerosols, increased UV-B radiation due to 
thinning of the ozone layer by halocarbons released from 
magma intruding and heating evaporites, and poisoning 
due to release of toxic pollution including polycyclic 
aromatic hydrocarbons (PAHs), mercury (Hg), and heavy 
metals (Fig. 2). Alone or cumulatively, these and other 
effects of LIPs have caused destabilization of terrestrial 
plant communities, as recorded by fossilized pollen and 
spores in the rock record. Understanding the response of 
land plants to large-scale magmatic events offers analogues 
for the global consequences of modern deforestation and 
diversity loss (Vajda et al. 2020).

Palynology (Greek, palúnō, to strew or sprinkle) includes 
the study of dispersed pollen and spores from land plants. 
The palynological record can offer a more comprehensive 
view of land plant change over time than other techniques 
used to reconstruct past vegetation because the morpholog-
ical characteristics of pollen and spores permit their identi-
fication to a low taxonomic level (often species), they are 
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Figure 1 Summary figure of changes in the diversity of land 
plants over geological time. Large igneous province 

(LIP) events, mean global temperature (°C) (orange = relatively 
warm intervals; blue = relatively cool intervals), and extinction of 
marine genera (%) are also shown for comparison. † = extinct plant 
groups. Four of the “Big Five” mass extinctions are shown in bold 
(excluding the end-Ordovician crisis). MMCO = Mid-Miocene 
Climatic Optimum; NAIP = North Atlantic Igneous Province; PETM = 

Paleocene–Eocene Thermal Maximum; K/Pg = Cretaceous–
Paleogene event; OJP1 = Ontong Java Plateau; OJP2+ = Caribbean-
Columbian Plateau, Madagascar flood basalts, Ontong Java 
Plateau; HALIP = High Arctic Large Igneous Province; CAMP = 
Central Atlantic Magmatic Province; Wr. = Wrangellia; PDD = 
Pripyat-Dnieper-Donets rift system. References are listed in the 
supplemental material.
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often exceptionally well-preserved, and they occur in great 
abundance in sedimentary rocks, permitting  statistical 
analyses and representation of rare types. For example, 
the pollen and spore record often indicates greater severity 
in both taxonomic extinctions and ecosystem structure 
effects during biotic crises in the geological past than 
macrofossil records (Lindström 2016; Nowak et al. 2019), 
indicating that many of the plants that disappeared during 
biotic crises, or shortly thereafter, were rare plants or plants 
with little macrofossil preservation potential (Lindström 
2021). Further biasing the record may be that the majority 
of the terrestrial fossil records are from lowland deposi-
tional settings, such as lacustrine or riparian environments 
where sediments accumulate. Thus, the macrofossil record 
of terrestrial land plants may be biased toward those that 
grew in wetlands. In contrast, the palynological record 
includes data from widely dispersed pollen and spores, 
including those from drier and/or upland habitats mixed 
with those from slope or lowland settings, and thus shows 
a more muted extinction intensity, for example, across the 
end-Permian extinction event (Dal Corso et al. 2022). In 
this contribution, we discuss the impacts of LIP magma-
tism on terrestrial land plant ecosystems by focusing on 
palynological evidence for land plant change during major 
biotic crises associated with LIP activity.

HOW LIP VOLCANISM IS MANIFESTED 
IN THE SPORE AND POLLEN RECORD
Although major changes in the evolution of land plants 
generally do not coincide with the Big Five mass extinctions 
(Fig. 1), there is ample evidence for regional-scale land 
plant extinction and community reorganization during 
almost all major crises, particularly those associated with 
LIP magmatism (Fig. 2; Table 1). Land plant compositional 
changes as recorded by pollen and spores occurred associ-
ated with the emplacement of the Siberian Traps, the Central 
Atlantic Magmatic Province (CAMP) the Karoo Ferrar 
LIP, the Kerguelen Plateau, Ontong Java Plateau, Paraná-
Etendeka Province, the High Arctic Large Igneous Province 
(HALIP), the North Atlantic Igneous Province (NAIP), and 
the Columbia River Basalts (Fig. 1; Table 1). While floral 
turnover is documented in the terrestrial fossil record at 
both high and mid-latitudes during most major biotic crises 
in Earth’s history, and in a variety of settings, the patterns 
of change appear to have been diachronous across latitudes 
(Vajda and Bercovici, 2014; Lindström 2016). More direct 
effects of large-scale volcanism will also differ geographi-
cally. Direct effects, such as landscape  disturbance and 
 lava-ignited wildfires, will be greater proximal to the 
location of lava emplacement. Conversely, atmospheric 
changes due to greenhouse gases and volcanic dust increase 
cloudiness and generate more thunderstorms and wildfires 

Figure 2 Flow chart showing the myriad of ways large-scale 
magmatism may impact land plants. Colors represent 

different modes of effects. Orange = emissions from large igneous 

provinces; brown = tectonic effects; dark blue = surface water 
effects; light blue = atmospheric effects; green = direct effects on 
land plants. 
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distally from the LIP. Latitudinal climate variability will 
enhance or impede the erosion process of continental 
LIPs and, therefore, the drawdown of atmospheric carbon 
dioxide and release of volatiles (van de Schootbrugge et al. 
2020). Herein, we focus on the numerous and inter-related 
agents of catastrophic environmental change associated 
with LIPs and their impact on land plants, especially their 
manifestation in the palynological record as spore spikes, 
aberrant pollen and spores, reworked palynomorphs, and 
compositional changes that reflect large-scale reorganiza-
tion of land plant communities.

Spore Spikes as Evidence of Widespread Habitat 
Destruction
Crises at the end-Permian (Hochuli et al. 2010), end-Tri-
assic (van de Schootbrugge et al. 2009; Lindström 2016), 
and end-Cretaceous (Vajda and Bercovici 2014), as well 

as smaller scale disturbances associated with LIP activity 
(Galloway et al. 2022), are all associated with increased 
abundances of spores of land plants (so-called “spore 
spikes”). Spore spikes, when referring to spores from land 
plants, reflect a floral response to major environmental 
disturbances, whereby opportunistic taxa, typically ferns, 
but also bryophytes (non-vascular plants such as mosses), 
lycophytes (vascular plants), and later in the geological 
record, angiosperms (flowering plants), colonize newly 
disturbed habitats. Fungal or algal spikes also occur, 
particularly at the end-Permian event, but are not further 
discussed herein (Dal Corso et al. 2022 and references 
therein). The spore spikes reflect pioneering plant commu-
nities, which, in the absence of renewed disturbance, are 
eventually replaced by successive intermediate species 
until a stable (“climax”) community is reached. This 
pattern of advancing ecological succession will be the same 

Table 1 LARGE-SCALE MAGMATIC EVENTS AND IMPACTS ON LAND PLANTS.
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 regardless of the cause of the disturbance, and spore spikes 
are often recorded in sedimentary successions, reflecting, 
for example, the first colonization of newly emerged areas 
during regressions. However, the spore spikes registered 
during mass extinction events are of a supra-regional to 
global extent and reflect substantial disturbance of the 
terrestrial ecosystem on larger scales (van de Schootbrugge 
et al. 2009). Several causal mechanisms often interact to 
increase the severity of the disruption, as was the case for 
the end-Triassic mass extinction where sea-level change, 
wildfire, and soil erosion led to habitat fragmentation 
and deforestation (van de Schootbrugge et al. 2009, 2020; 
Belcher et al. 2010; Lindström 2021).

The magnitude of the spore spike appears to be related to the 
severity of the crisis. Spore abundances during the end-Per-
mian reached 95% in some locations (Hochuli et al. 2016). 
During the end-Triassic event, maximum spore abundances 
during the extinction interval reached 55%–90% of the 
spore–pollen floras (van de Schootbrugge et al. 2009; 
Lindström 2016). Fern, lycophyte, and bryophyte spores 
made up to 70% of the palynoflora in strata deposited after 
the first lava flows of the HALIP in Arctic Canada (Galloway 
et al. 2022). Fern pioneers are also well documented in 
response to smaller-scale disturbances associated with 
modern magmatic activity. For example, ferns were early 
colonizers of denuded ground after landslides associ-
ated with the 1980 Mount St. Helens eruption and were 
dominant plants following the cataclysmic eruption of 
Krakatau in 1883 (Tschudy et al. 1984). The dominance 
of ferns in particular following disturbance is the result 
of their tolerance of ecological stress, including their 
ability to grow on strongly leached and/or nutrient-poor 
or metal-enriched soils, tolerance of low-light conditions, 
short generation cycles, and other life-cycle traits such 
as gametophytic (haploid generation) self-fertilization 
and reproduction through segmentation of underground 
rhizomes (creeping rootstalks). 

Wildfires
Wildfire is an integral component of land plant ecology. 
Low-intensity fires that burn close to the ground “clean” 
and “thin” the forest by removing thick flammable biomass 
from the forest floor, creating habitat for regeneration. In 
contrast, high-severity fires burn with intense heat and 
climb into and remove tree canopy, and combust soil 
organic matter and damage roots on the ground. Large-
scale magmatism can cause widespread wildfire (van de 
Schootbrugge et al. 2009; Belcher et al. 2010) via emplace-
ment-related ignition or due to the higher atmospheric 
CO2 conditions that increase lightning strikes. Records of 
charcoal, fusinite (a maceral in coal), fly-ash, and polycyclic 
aromatic compounds (PAHs) indicate increased and inten-
sified wildfires associated with many LIP and extinction 
events (Table 1). Following ignition, the frequency and 
severity of fires are related to a number of effects, including 
bottom-up controls such as vegetation, fuel, and topog-
raphy, and top-down controls such as climate and the 
amount of atmospheric O2 (Belcher et al. 2010). Changes 
in fuel properties due to climate-induced vegetation shifts 
further modulate fire regimes (Belcher et al. 2010). Wildfire 
associated with LIPs affected vegetation in numerous and 
complex ways. Wildfires increased across the Paleocene–
Eocene Thermal Maximum (PETM), even in high northern 
latitudes and even though conditions were humid, due to 
a climate-driven shift towards angiosperm-dominated 
vegetation that resulted in increased biomass and/or conti-
nuity of more fire-prone taxa (Denis et al. 2017). Across the 
end-Permian event, a spike in wildfire activity is implicated 
as one of many cumulative effects that caused abrupt extir-
pation of the primary coal-forming carbon sinks, such as 

the Glossopteris biome of Gondwana (Vajda et al. 2020) and 
the tropical gigantopterid and conifer forests of eastern Asia 
(Chu et al. 2020). Wildfires that occurred with the emplace-
ment of CAMP during the end-Triassic event exacerbated 
widespread deforestation (van de Schootbrugge et al. 2009; 
Belcher et al. 2010) and contributed to catastrophic soil loss 
over extensive areas. 

Reworked Palynomorphs as Indication of 
Large-scale Erosion 
As a consequence of weathering and erosion processes, 
spores and pollen (and other palynomorphs) from older 
sedimentary units can be redeposited into younger 
sediments and mixed with the in-situ palynomorphs. 
During the end-Triassic event, catastrophic soil loss 
occurred across much of Europe as a consequence of defor-
estation from wildfires and acid rain, as well as seismic 
activity. This is evidenced by abundant reworked palyno-
morphs in sediments deposited during the crisis, both on 
land and at sea (van de Schootbrugge et al. 2020). A similar 
scenario has been proposed for the PETM (Korasidis et al. 
2022). Such enhanced soil loss may have contributed to 
adverse conditions on the ocean shelves, causing eutro-
phication of surface waters through enhanced input of 
phosphorus and other bio-limiting nutrients that would 
have been delivered via massive-scale soil erosion and/
or transgression. Thus, what happens on land affects the 
marine environment as well (van de Schootbrugge et al. 
2020). 

Sea-level Change
Sea-level changes caused by LIP emplacement have 
also influenced land plants over geological time. At the 
end-Triassic event, associated with emplacement of the 
CAMP, climate and sea-level changes caused fragmenta-
tion and destruction of coastal and near-coastal lowland 
mire habitats around the European epicontinental sea and 
Tethys margin (Lindström 2021). This habitat change, 
together with other ecological stressors induced by volca-
nism, caused a reduction in abundance and geographic 
range of gymnosperm trees and shrubs adapted to those 
environments. A subsequent sea-level fall then promoted 
colonization of disturbed areas by pioneering opportun-
ists and herbaceous survivors in an environment already 
stressed by increased wildfire and enhanced soil erosion. 
Sea-level rise ultimately restored some of the near-coastal 
mire habitats and recovery ensued. In another illustration 
of complex feedbacks, water table rise, as a response to the 
abrupt disappearance of vegetation from the landscape, 
during and following the end-Permian event, increased 
salinity that further compromised terrestrial habitability 
(Vajda et al. 2020).

Spore-pollen Mutagenesis—Evidence of Ozone 
Depletion, Hg-pollution, or Both? 

Volcanic activity can emit a range of known primary 
phytotoxic pollutants, including Hg and other heavy 
metals, fluoride, O3, SO2, and PAHs. For instance, lesions 
on fossil plant leaves indicate that plants were subjected to 
SO2-induced damage from acid rain during the end-Triassic 
crisis (Steinthorsdottir et al. 2018). Phytotoxic substances 
can induce stress responses and cause morphologically 
visible changes (e.g., stunted growth, lesions, necrosis, root 
shortening) in the parent plants, but can also cause damage 
leading to mutations in spores and pollen. While various 
common environmental stresses for plants (e.g., drought, 
frost, water logging) can disrupt the spore or pollen matura-
tion processes and result in premature shedding of immature 
spores or pollen that may or may not be retained and 
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dispersed in tetrads, these disruptions are generally local 
and short-lived from a geological point of view. One of the 
most striking features in the palynological record contem-
poraneous with several LIP-associated extinction events is 
the presence of mutated spores and pollen (Fig. 1; Table 1). 
Based on both living and fossil plants, normal spore/pollen 
formation results in 95%–97% viable and 3%–5% underde-
veloped or abnormal, non-viable spores or pollen. Aberrant 
spore/pollen quantities above 5% are, therefore, indicative 
of environmental stress (Lindström et al. 2019). Lindström 
et al. (2019) document an increase of up to 70% aberrant 
spores at the end-Triassic extinction event in the Danish 
and German basins contemporaneous with an increase 
in Hg and a negative carbon isotope excursion (see Title 
Figure). During the Smithian–Spathian boundary event 
(a late Early Triassic crisis in the wake of the end-Permian 
event), ~50% of spores and pollen were “malformed” across 
the negative δ13Corg shift of this event in Pakistan (Galasso 
et al. 2022); and during the end-Permian crisis, 40% of 
the total assemblage co-occurring with the onset of the 
negative δ13Corg shift were considered abnormal, indicating 
that the reproductive ability of the parent plants was inhib-
ited (Hochuli et al. 2017). Spore/pollen mutagenesis during 
LIP events could have been caused by increased and lethal 
UV-B radiation as a result of stratospheric ozone depletion 
by halocarbon and aerosol emissions from LIP magmatism 
(Benca et al. 2018, 2022), volcanic induced Hg-toxicity (or 
other heavy metals) (Lindström et al. 2019), and possibly 
acid rain (SO2) and soil acidification (Hochuli et al. 2017; 
van de Schootbrugge et al. 2009) in addition to general 
environmental stress. 

Not all LIP emissions were deleterious to land plants. 
Mercury is toxic to many plant species but not to all: it 
can damage cell division, is mutagenic, but can also induce 
polyploidization that is adaptive in some cases. Loading of 
atmospheric gaseous Hg associated with LIP activity could 
have contributed to ecological turnover of terrestrial vegeta-
tion by damaging the development of some species while 
benefitting others (Lindström et al. 2019). Phosphorus is 
emitted from volcanism and thermal fixation (reaction of 
P with other minerals to form insoluble compounds, facili-
tated by heat) and subsequent atmospheric oxidation of 
NOx in volcanic environments provide essential macronu-
trients to land plants (Jolley et al. 2008). Phosphorus levels 
are further enhanced from weathering and breakdown of 
soil minerals, basaltic lava, and ash. Nitrogen becomes 
available by decomposition and burning of already-estab-
lished biomass as well as NO3 production at the interface 
between hot lava (thermal fixation) and the atmosphere 
(Mather et al. 2004). Eutrophication from phosphate and 
nitrate deposition derived from volcanic gases and weath-
ering of volcanic products may have provided conditions 
that favored development of high-productivity ecosystems 
during LIP emplacement (Jolley et al. 2008). Alkali-rich 
volcanic ash from LIPs could also have supplied nutrients 
(e.g., K, Ca, Na) to land plants. 

Climate Change
Warming is linked to synergistic stresses for land plants and 
is likely part of the “lethal cocktail” of LIP effects (Bond 
and Sun 2021). After the end-Permian mass extinction, 
temperatures on land may at times have reached >40 °C 
during the late Smithian Thermal Maximum (Sun et al. 
2012), which is too hot for most land plants to survive. 
This undoubtedly contributed to the prolonged recovery 
of terrestrial ecosystems at this time. The Jenkyns Event 
was another hyperthermal episode of the Phanerozoic, 
associated with a second-order extinction event in the early 
Toarcian (ca. 183 Ma; Early Jurassic) and associated, in part, 

with outgassing from emplacement of the  Karoo-Ferrar LIP. 
While the Jenkyns Event is manifested mostly as changes in 
marine ecosystems, it is also recorded in terrestrial deposits 
by changes in the diversity and composition of land plants. 
Slater et al. (2019) examined pollen and spore assemblages 
from Tethyan Pliensbachian–Toarcian strata and showed 
that vegetation across the Jenkyns Event shifted from high 
diversity mixed conifers, seed ferns, and wet-adapted ferns 
and lycophytes to an assemblage dominated by plants 
adapted to drier conditions, such as cheirolepids and other 
conifers. Thus, the event caused a substantial short-term 
reduction in floral richness and diversity, but also a longer-
term turnover in terrestrial vegetation. In Arctic Canada, an 
interval of Hauterivian to early Barremian warming related 
to recovery from the Valanginian cold snap, and/or CO2 
forced warming associated with Paraná-Etendeka Province 
activity, resulted in an expansion of hinterland commu-
nities dominated by Pinaceae (Galloway et al. 2022). The 
PETM was a hyperthermal event associated with emplace-
ment of the NAIP that caused changes in both marine 
and terrestrial realms through effects on seasonality and 
precipitation (Jaramillo et al. 2010; Korasidis et al. 2022). 

Magmatic activity of LIPs increased the frequency and 
intensity of climate extremes, such as prolonged heatwaves, 
drought, precipitation changes, fluctuating groundwater, 
major storms, and wildfires; and also caused atmospheric 
pollution through volcanic dust, sulfur dioxide, and heavy 
metals, which contributed to major biotic crises in the past. 
Hence, the geological record of LIP-induced extinction 
events provides an informative archive on how land plants 
may respond to future environmental stress. 

CONCLUSIONS
Large-scale magmatic events set off a biogeochemical 
cascade that affects the atmosphere, geosphere, biosphere, 
and hydrosphere of the planet. LIPs occur contempora-
neous with almost all major biotic crises throughout the 
history of life on Earth. While devastation to animal life 
appears to have been greater than effects on land plants, 
LIPs nonetheless have provoked major changes in terres-
trial vegetation. Specific and interacting agents of vegeta-
tion change include habitat destruction, wildfire, climate 
change, sea-level change, and emissions of toxic substances 
that are variously manifested in the pollen and spore 
record. Spore spikes reflect habitat disturbance, compo-
sitional changes, abnormal pollen and spores as a result 
of environmental stress and mutagenesis, and abundant 
reworked pollen and spores that reflect soil erosion on a 
massive scale. These causal agents interact with each other; 
for example, climate change induces vegetation changes 
that, in turn, affect wildfire intensity and frequency. 
Understanding the response of land plants to major biotic 
crises, and the complex feedbacks associated with vegeta-
tion change, can inform adaptive mitigation strategies in 
the face of current and forecasted climate change. 
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