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All About Particles: 
Modelling Ore Behaviour 
in Mineral Processing

INTRODUCTION
In their general introduction to geometallurgy, Frenzel 
et al. (2023 this issue) provide a broad overview of the 
two key processes occurring in most mineral processing 
plants, comminution and mineral separation, as well as their 
respective goals. In addition, Butcher et al. (2023 this issue) 
outline the different analytical techniques available for 
the quantitative characterisation of ores, intermediate 
materials, products, and wastes. This article delves more 
deeply into the processes occurring within comminution 
and mineral separation devices, how they are influenced by 
primary ore properties, and how this can be understood and 
forecast quantitatively. This is an essential part of geomet-
allurgical modelling, as mineral processing operations 
form the link between the orebody, the downstream extrac-
tive metallurgical processes, and tailings. Optimisation of 
the entire value chain is only possible if reliable, quantita-
tive forecasts can be made for the performance of mineral 
processing operations.

Before proceeding with the detailed descriptions of commi-
nution and mineral separation, it is helpful to emphasise 
two general features of mineral processing operations. 
First, the output of comminution devices generally consists 
of polymineralic, not monomineralic, ore particles. 
Consequently, sorting devices do not act on pure mineral 

properties, but on particle proper-
ties, and ore particles are there-
fore the fundamental entities to 
be considered in the modelling of 
mineral processing operations (cf. 
Lamberg and Vianna 2007). This 
is analogous to atoms, molecules, 
and ions being the fundamental 
entities for the description of 
thermodynamic processes. 

Second, while the specific physical 
processes affecting each particle 
(e.g., breakage after a collision 
event in a comminution device, 
or movement in a magnetic field) 
are, in principle, deterministic, 
one can never obtain sufficiently 

complete information on the initial states of all particles 
to completely describe their behaviour in a process. That 
is, the exact positions and momenta of all individual parti-
cles when they enter a device are unknown, as are their 
sizes, shapes, mineralogical and surface compositions, and 
internal textures. For this reason, the processes within a 
mineral processing plant are best modelled stochastically: 
one needs to describe, for each particle or particle type, the 
various potential process outcomes and their probability of 
occurrence (cf. Pereira et al. 2021a). An analogy can again 
be made with thermodynamics, where the macroscopic 
behaviour of a system is generally explained in terms of the 
movements and interactions of its microscopic constituents 
(atoms, ions, or molecules), which cannot all be described 
precisely, but are instead characterised by probability 
distributions.

COMMINUTION AND MINERAL 
LIBERATION
Comminution is the process of reducing the particle size 
of an ore to liberate the ore minerals from the gangue 
minerals. Thus, comminution strongly controls the 
overall efficiency of a mineral processing operation. Even 
though blasting as the first step of extracting an ore from 
the ground is also a form of comminution, the focus here 
is on the processes occurring in comminution devices: 
crushing, which reduces large rock lumps to millimetre-
sized fragments, and milling, which subsequently produces 
micrometre-sized particles.

The several types of crushers and mills available (Wills 
and Finch 2015) mainly differ by the stress mecha-
nism and energy intensity they apply to ore particles, as 
summarised in Table 1. The most important stress mecha-
nisms are shear and compression (Fig. 1A). Shear mostly 
leads to breakage by abrasion, which produces many small 
fragments but only slowly reduces the size of the feed 
particles. Thus, shear seldom contributes to liberation, 
but generates large amounts of finer particles that can be 

Mineral processing encompasses the series of operations used to first 
liberate the valuable minerals in an ore by comminution, and then 
separate the resulting particles by means of their geometric, compo-

sitional, and physical properties. From a geometallurgical perspective, it is 
fundamental to understand how ore textures influence the generation of 
ore particles and their properties. This contribution outlines the processes 
used to generate and concentrate ore particles, and how these are commonly 
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the most important research challenges remaining in this branch of geometal-
lurgy is presented.
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detrimental to downstream separation processes. In some 
cases, abrasion is useful, e.g., when particle surfaces must 
be cleaned before processing. On the other hand, compres-
sion can lead to particles breaking into several fragments 
of mostly similar size, plus some much finer particles. 
Compared with shear, breakage by compression leads to 
a more significant reduction of average particle sizes and 
better contributes to liberation. In practice, comminution 
devices are designed to mostly apply compression stresses 
to particles, but shear ultimately happens as a corollary 
effect, especially if the energy available for breakage is low. 
Parapari et al. (2020) provide more details on the inter-
play between stress mechanisms, energy intensities, and 
breakage types. 

In addition to the stress mechanism, the actual breakage 
events undergone by individual ore particles depend on 
particle properties such as size, shape, mineralogy, and 
texture. For instance, the largest and smallest particles 
in a tumbling mill generally break at lower rates than 
intermediate-size particles because they are less likely to 
experience high stress intensities due to collisions with 
the grinding media. Particles primarily consisting of hard 
minerals, such as quartz, are typically less likely to break 
than those consisting of softer minerals like calcite or 
galena. In addition, minerals with prominent cleavages, 
such as galena, are also more likely to break. In addition, 
the internal texture of the ore particles, i.e., the arrange-
ments, sizes, shapes, and cleavages of the mineral grains 
within them, play a vital role in controlling breakage and 
mineral liberation. 

To better understand the influence of particle texture, the 
distinction between random and non-random breakage must 
be introduced (Mariano et al. 2016). Random breakage 
occurs when particles of the same shape and size break 

Figure 1 (A) Simplified illustration of the direction of forces 
acting on monomineralic particles in compression and 

shear, as well as the expected breakage types. (B) Example of 
non-random breakage types for a hypothetical quartz-galena ore.
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Table 1 DESCRIPTION OF THE MAIN TYPES OF CRUSHERS AND MILLS USED IN THE RAW MATERIALS SECTOR. Applicable size 
range and reduction ratios are reference values—real case values might vary strongly dependent on the field of application 

or material properties. Data from Höffl (1986), Wills and Finch (2015), and Kawatra and Young (2019).

Name Type
Applicable size 
range (in mm) Stress  

mechanism
Reduction 

ratio Remarks
Feed Product

Jaw Crusher – 103 101 Compression 5–9 Primary crushing; robust design

Gyratory 
Crusher

With steep 
cone 103 101 Compression 7–10 Primary crushing 

With flat cone 102 100 Compression 7–18 Post-primary crushing; produces a well-
defined size distribution

Roll Crusher

Smooth 102 5 × 100 Compression 3–4
Used for material with hard mineral 
inclusions; stacked devices produce 
higher reduction ratios

Profiled 102 5 × 100 Compression 3–12
Comminution of soft to intermediate 
materials; profiles allow high reduction 
ratios

Tumbling Mill

Rod Mill 5 × 101 10−1 Shear & 
Compression 20 Coarse milling down to 0.3–0.5 mm

Autogenous 
Mill 102 (100)* 10−2 Shear & 

Compression up to 100
Coarser particles act as grinding media, 
allowing high reduction ratios and high 
throughput

Ball Mill 102 (100)* 10−2 Shear & 
Compression 60 Final milling step to reach the target 

particle size for flotation

Stirred Media 
Mill – 10−1 10−3 Shear & 

Compression 100

Ceramic beads (~5–10 mm), steel balls, 
or silica sand is added as grinding media. 
Pins, discs, or spiral screws transfer the 
energy into the mill. Energy input can 
lead to fluidisation of the grinding 
media, suitable to mill fine feed materials 
effectively

Vertical Mill – 102 5 × 10−2 Compression 20 Pressure applied vertically by rollers

* Marks values based on the authors’ experience in the mineral processing sector.

A

B
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in the same way under the same stress, irrespective of 
their internal structure. In non-random breakage, on the 
other hand, the particle texture determines the outcome 
of the breakage event. The most important non-random 
breakage mechanisms are illustrated in Figure 1B for a 
hypothetical example of quartz-galena particles. In selec-
tive breakage, one mineral breaks more easily than others 
due to its cleavage, low hardness, or pre-existing fractures. 
This is likely to occur for quartz-galena particles due to the 
prominent cleavages and low hardness of galena, resulting 
in many fine and well-liberated galena particles. Liberation 
by detachment happens when fractures propagate better 
along phase boundaries than within mineral grains. This 
is less likely in the present example, but would result in 
perfect liberation of galena and quartz. Finally, boundary-
region fracture occurs when stress is concentrated in one of 
the minerals next to a phase boundary due to a significant 
contrast in the elastic properties of the two minerals. This 
is possible in the galena-quartz example. Interestingly, it 
results in particles generated from the boundary region 
showing worse liberation than the feed particles, reversing 
the typically positive correlation between particle size 
and liberation. King and Schneider (1998) provide more 
detailed descriptions of breakage types, whilst Hesse et al. 
(2017) document how non-random breakage can be used 
to design energy-efficient comminution routes.

It should be noted that the different stress mechanisms, 
energy levels, and breakage types co-occur in all commi-
nution devices. The rate at which they affect individual 
particles depends on the type of device, the operating 
conditions (material throughput, energy input), and the 
geometallurgical properties of the feed particles. Hence, 
for any given particle, each possible breakage event may 
occur with a certain probability, arising from the complex 
interplay between the comminution device and the particle 
properties. It is thus fundamental to understand and model 
these probabilities to fully model comminution processes 
at the particle level. This is also the key to the success of 
any integrated geometallurgical framework, where textures 
observed in the orebody are to be converted to quantita-
tive estimates of metal recovery. However, the variable 
and complex interactions between comminution devices, 
operating conditions, and 3D particle geometry, particu-
larly where non-random breakage is essential, still pose 
considerable difficulties to the practical implementation 
of such a modelling approach.

Due to this complexity, most comminution models 
currently only predict how particle size distributions 
change from input to output streams (King et al. 2012), 
even though comminution is about mineral liberation. 
Overall, the approaches to model particle breakage and 
mineral liberation in comminution can be subdivided into 
three main groups that roughly reflect the chronological 
order of their development:

 � Empirical approaches are based on the results obtained 
from dedicated test work, e.g., the relationship between 
the energy input into the system and measures of the 
particle sizes of the feed and output streams (Bond 1952; 
Morrell 2004). Some more modern empirical models 
attempt to predict mineral liberation and size reduction 
(Gay 2004; Guntoro et al. 2021); however, these models 
are currently strictly limited in the number of minerals 
they can consider given computational limitations.

 � Population-balance approaches combine particles into a 
small number of types or groups according to the 
frequency distribution of some of their properties (e.g., 
particle size, mineral composition). They then model 
how often the particles in each type experience a 
breakage event, the likely types resulting from such 
events, and the discharge rate of the various particle 

types out of the device. This approach can account for 
some non-random breakage modes (King and Schneider 
1998). While population-balance models use phys-
ics-based equations to quantify each process, the param-
eters of the governing equations are estimated from 
experimental work (Powell and Morrison 2007; King et 
al. 2012). The major limitation of these models is the 
small number of properties considered in the definition 
of the particle types. For instance, only two ‘minerals’, 
i.e., ore and gangue, are often considered, ignoring the 
different properties and distinct behaviour that different 
ore and gangue minerals may exhibit. For example, chal-
copyrite and galena can be found together in some 
deposits, and their breakage behaviour (as a function of 
hardness, cleavage, etc.) is very different.

 � Fundamental approaches attempt to mechanistically 
model the interactions of individual particles within the 
comminution device to determine their breakage behav-
iour, e.g., quantifying the movement of particles and 
grinding media, the forces resulting from their interac-
tions, and the breakage events occurring (Weerasekara 
et al. 2013). The high level of detail concerning particle 
interactions makes these models a powerful tool for 
designing new machinery. However, their usage in 
geometallurgy is limited: only a few minerals and simple 
particle shapes (e.g., spheres) can be modelled, which 
represent gross oversimplifications for capturing the true 
textural variability of actual ore particles.

The transition from empirical to fundamental models has 
mostly been linked to improvements in process under-
standing, available computational power, and the devel-
opment of characterisation techniques focused on textures 
(Butcher et al. 2023 this issue). A major research challenge 
for the future is the full inclusion of the vast amounts of 
textural data produced by modern analytical techniques 
into comminution models. This is a complex problem in 
stochastic geometry and will likely require some time to 
be fully resolved. Regardless, this challenge is key to the 
successful implementation of geometallurgical programs 
because the particle data to be used in mineral separa-
tion models should ideally be provided by comminution 
models based on direct observations of in-situ ore textures. 
As covered in the next section, mineral separation model-
ling requires knowledge of many textural properties of the 
ore particles.

MINERAL SEPARATION
Once comminution has produced sufficiently well-liberated 
particles, the next task is the separation of those particles 
carrying ore minerals. This step is necessary to increase 
the efficiency of downstream metal extraction processes 
(Chetty et al. 2023 this issue), and is generally done in 
several stages. The basic idea is to subject the particles to an 
external field or force, which causes each particle to move 
along a different trajectory, usually because of its specific 
mineralogical composition, size, and shape. Different 
trajectories then result for particles with different compo-
sitions reporting to different output streams, as illustrated 
in Figure 2 for the case of magnetic separation.

Figure 3 provides an overview of important mineral separa-
tion methods, indicating the properties they exploit and the 
particle size range over which they are applied. The most 
frequently exploited properties are density, electric suscep-
tibility, magnetic susceptibility, and surface chemistry 
(Wills and Finch 2015), depending on the specific property 
contrasts between ore and gangue minerals. For example, 
magnetite is typically concentrated by magnetic separation 
because of its high magnetic susceptibility, while chromite 
can be separated from silicates with gravity separation 
due to its higher density. Additionally, depending on the 
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mineral associations present in the ore, different combi-
nations of methods in a different order may be necessary 
for an efficient concentration of the value minerals: an 
example is described in Pereira et al. (2019) for a carbon-
atitic niobium ore.

Particle size is also critical for choosing an appropriate 
separation device (Fig. 3), the main reason being the 
stronger influence of particle–particle interactions in finer 
particle systems, which are often larger than the forces 
acting in favour of selective separation. A possible solution 
is to reduce particle–particle interactions by, for instance, 
using wet instead of dry separation processes (cf. wet and 
dry magnetic separation in Fig. 3). This is because particles 
are better dispersed in a slurry (a wet environment). When 
choosing between wet and dry processes, though, one must 
consider the resulting ancillary costs (e.g., water treatment, 
dewatering) and the overall availability of water (Aitken 
et al. 2016).

When modelling separation processes, the main difference 
to comminution is that ore particles are largely preserved 
intact during mineral separation, whereas they are strongly 
modified or destroyed during comminution. This makes 
mineral separation much easier to model, as it does not 
involve the solution of the complex geometrical problems 
associated with particle breakage. 

As mentioned, the trajectories followed by individual 
particles inside separation devices depend on their specific 
properties and corresponding interactions with the device. 

From an outside perspective, these trajectories are, again, 
uncertain. Thus, they are best modelled by a set of probabil-
ities for each particle to report to each of the several output 
streams of the device, with the probabilities depending 
directly on the particle properties and process conditions. 
This way of modelling mineral separation is illustrated for 
a simple example in Figure 4, showing what would happen 
to galena-quartz particles from the hypothetical ore of 
Figure 1 inside a dense media separator. In this device, 
particles are suspended in a liquid with an intermediate 
density between the ore and gangue minerals. This suspen-
sion travels along the device, allowing individual parti-
cles to float or sink. In the output, particles denser than 
the medium are collected in the underflow, while lighter 
particles are collected in the overflow. The probability of 
a particle going to a specific stream largely depends on its 
density, hence on the relative content of galena and quartz, 
as indicated in Figure 4B. Besides particle density, turbu-
lence, particle–particle interactions, and particle size and 
shape further modify these probabilities. For instance, 
light particles may be trapped within a few dense parti-
cles causing them to report to the underflow stream. These 
unwanted effects affect the aforementioned probabilities, 
so the observed probability function (or partition curve) as 
a function of particle density is less sharp than the ideal 
separation curve (Fig. 4B). 

The modelling of mineral separation processes revolves 
around assigning appropriate probabilities to individual 
particles or particle classes to report to the different output 
streams. Different approaches are used in the literature, just 
as in comminution modelling: 

 � Empirical approaches are based entirely on test-work or 
direct process characterisation in a plant. In the most 
basic implementations, these only describe bulk mineral 
recoveries observed in a process as a function of specific 
process parameters (Wills and Finch 2015). A classic 
implementation in terms of particle properties is the 
partition curve (also known as Tromp curve, Tromp 
1937), which describes the recovery in a stream based on 
a particle property, taking into account the uncertainties 
of the separation process. However, this is restricted to a 
single particle property such as density (Fig. 4B). In the 
most advanced methods, probabilities are assigned to 
individual particles characterised through modern 
imaging techniques (cf. Butcher et al. 2023 this issue), 
enabling a detailed process understanding (Pereira et al. 
2021a). However, empirical approaches can only be used 
to model processes under the same conditions as those 
covered by the test work. Extrapolation of results to other 
process conditions is not straightforward.

Magnetic separator

Magnetic Non-magnetic

High magnetic 
susceptibility
Low magnetic 
susceptibility

minerals

Figure 2 Schematic representation of the trajectories of 
different particles in a magnetic separator according 

to their content of high/low magnetic susceptibility minerals.

Figure 3 Schematic summary of mineral separation devices 
showing applicable particle size ranges and exploited 

physical properties. MS = magnetic separation. Modified after 
Wills and Finch (2015).
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 � Population-balance approaches describe the process in 
terms of a small number of particle groups. For this 
purpose, they use physical laws and aggregated parame-
ters estimated from test work, e.g., the buoyancy rate of 
a specific particle class in a heavy liquid (King et al. 2012). 
The main limitation of this approach is the small number 
of particle classes, and thus properties, for which can be 
accounted. However, using physical principles allows for 
some extrapolation of the results beyond the coverage of 
test work.

 � Fundamental approaches consider the physical processes 
occurring at the level of individual particles (e.g., attach-
ment of particles to bubbles in flotation; Koh and Schwarz 
2006) and attempt to model these purely in terms of first 
principles. Unfortunately, the high number of device- 
and process-specific parameters, which must often be 
known for full implementation, limits their application. 
In many cases, these parameters are not directly meas-
urable, e.g., the actual surface hydrophobicity of a 
mineral in the flotation cell. 

While current approaches to particle-based modelling 
of mineral separation processes are powerful, particu-
larly the most recent developments in empirical model-
ling, substantial limitations remain for each approach. 
A promising route for future research would be to combine 
particle-based empirical models with fundamental models 
to overcome the limitations of both approaches. 

CASE STUDY
The following case study provides an example of the 
detailed process understanding that can be achieved with 
state-of-the-art empirical approaches for mineral separa-
tion modelling, combining modern analytical tools with 
machine learning. This case study aims to understand the 
process behaviour of individual particles in a laboratory 
scale froth flotation test.

The process of froth flotation first requires some explana-
tion. Froth flotation is a wet mineral separation method, 
in which the hydrophobicity (i.e., repellence of water) of 
specific mineral surfaces is increased through mineral-
specific chemical reagents and pH regulation. Air is then 
bubbled through the particle–water slurry and particles 
containing the hydrophobised minerals attach to the 
bubbles and rise to the top, forming a froth (i.e., foam with 
particles) enriched in the target mineral. Froth flotation is 
a highly versatile process because many chemical additives 
are available that can be used to tailor its selectivity for 
specific minerals (Fuerstenau et al. 2007).

In the present case study, a sedimentary apatite ore 
containing dolomite and quartz as major gangue minerals 
was processed by froth flotation with pre-defined operating 
conditions (Hoang et al. 2018) to recover apatite. The output 
streams (concentrates and tailings) were characterised 
by automated SEM-based image analysis (Fandrich et al. 
2007). The recovery probabilities of all characterised parti-
cles were then estimated following the method of Pereira et 
al. (2021a). This method uses multivariate logistic regres-
sion to quantify the relation between particle size, shape, 
modal and surface compositions, and recovery probabili-
ties. The quantification is based on the frequencies at which 
particles end up in each output stream and the properties of 
the particles found in these streams. Figure 5 displays the 
relation between recovery probability to the concentrate 
and particle size, shape, and mineralogical composition as 
extracted from the trained model.

It is interesting to note the distinct behaviour of liber-
ated apatite particles compared with those of the different 
gangue minerals (Fig. 5A). Apatite has a recovery proba-
bility close to 1, and particle size is not as crucial for its 
recovery as for the gangue minerals. Liberated apatite parti-
cles are virtually always recovered into the mineral concen-
trate. Furthermore, the recovery probability of fine-grained 
dolomite and quartz particles is almost twice as high as 
that of their coarse counterparts. Regarding particle shape, 
rounder particles (aspect ratio ≈ 1) report to the concen-
trate more frequently than elongated particles (aspect ratio 
≈ 0.1), irrespective of their composition. However, some 
caution is required here as the analytical method considers 
only 2D slices of 3D particles, introducing a difference 
between apparent versus actual sizes and shapes (Butcher 
et al. 2023 this issue). Finally, Figure 5B makes it evident 
that mineral association strongly influences apatite flota-
tion: apatite-bearing particles appear to float better when 
they contain dolomite rather than quartz.

This better flotation of dolomite-bearing particles is, in 
fact, a problem for the process because magnesium is a 
penalty element in subsequent extractive metallurgical 
treatments, such as leaching (cf. Chetty et al. 2023 this 
issue). Further milling may increase apatite liberation, but 
at the expense of producing even finer particles with worse 
separability. If the minerals are too finely intergrown such 
that full liberation requires very fine grinding (<10 µm), the 
ore might be uneconomic. Thus, early removal of ore types 
containing fine dolomite-apatite intergrowths may be 
crucial. This highlights the value of a good understanding 
of the major primary geometallurgical ore properties, and 
how they relate to deposit geology. Interested readers can 

Figure 4 Schematic illustration of the behaviour of a  
galena-quartz ore during dense media separation. 

(A) Particles heavier than the dense medium sink to the underflow 
product, while lighter particles are recovered near the surface in 
the overflow product. 

(B) Several models (=partition curves) for the relation between 
particle density and the probability of recovery in the heavy 
product: ideal separation, ideal splitting (no separation at all), 
sigmoidal partition curve fitted to experimental data, and a 
non-parametric estimate of the partition curve.
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find further information on this case study in Pereira et al. 
(2021b), including an interactive online tool to explore the 
modelling results.

FINAL REMARKS
This contribution introduced the key features of comminu-
tion and mineral separation processes, specifically focusing 
on the material being processed (the particles) and how 
its properties (particle sizes, shapes, and textures) influ-
ence the process outcomes. In addition, it highlighted the 
need for probabilistic approaches when modelling these 
processes, and demonstrated the power of current model-
ling approaches, particularly for mineral separation. 

Going forward, considerable research is still required to 
create the capabilities required to fully model mineral 
processing operations. In particular, the current lack of 
particle-based comminution models able to incorporate 
full 3D ore textures limits the connections that can be 
made between the primary properties of an in-situ ore and 
its behaviour during mineral separation. It is currently not 
possible to accurately predict what the particle population 
resulting from the comminution of a specific ore block 
will look like. This severely limits the power of predictive 
geometallurgy. Recent developments in 3D ore charac-
terisation (Butcher et al. 2023 this issue) and continuing 
conceptual, mathematical, and algorithmic developments 
may solve this problem in the near future. 
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Figure 5 Results of particle-based analysis of froth flotation 
tests for a sedimentary apatite ore: (A) Scatter plots of 

recovery probability versus particle size and shape for well-liber-
ated apatite, dolomite, and quartz particles. (B) scatter plots of 
recovery probability versus particle size and apatite, dolomite, and 
quartz content of all particles containing apatite. Data from 
Pereira et al. (2021b).
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