Thematic Articles

Earth Catastrophes and Their Impact on the Carbon Cycle

Carbon is one of the most important elements on Earth. It is the basis of life, it is stored and mobilized throughout the Earth from core to crust and it is the basis of the energy sources that are vital to human civilization. This issue will focus on the origins of carbon on Earth, the roles played by large-scale catastrophic carbon perturbations in mass extinctions, the movement and distribution of carbon in large igneous provinces, and the role carbon plays in icehouse–greenhouse climate transitions in deep time. Present-day carbon fluxes on Earth are changing rapidly, and it is of utmost importance that scientists understand Earth’s carbon cycle to secure a sustainable future.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Earth Catastrophes and Their Impact on the Carbon Cycle Read More »

Diamond Exploration and Resource Evaluation of Kimberlites

Kimberlite rocks and deposits are the eruption products of volatile-rich, silica-poor ultrabasic magmas that originate as small-degree mantle melts at depths in excess of 200 km. Many kimberlites are emplaced as subsurface cylindrical-to-conical pipes and associated sills and dykes. Surficial volcanic deposits of kimberlite are rare. Although kimberlite magmas have distinctive chemical and physical properties, their eruption styles, intensities and durations are similar to conventional volcanoes. Rates of magma ascent and transport through the cratonic lithosphere are informed by mantle cargo entrained by kimberlite, by the geometries of kimberlite dykes exposed in diamond mines, and by laboratory-based studies of dyke mechanics. Outstanding questions concern the mechanisms that trigger and control the rates of kimberlite magmatism.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Diamond Exploration and Resource Evaluation of Kimberlites Read More »

Kimberlite Volcanology: Transport, Ascent, and Eruption

Kimberlite rocks and deposits are the eruption products of volatile-rich, silica-poor ultrabasic magmas that originate as small-degree mantle melts at depths in excess of 200 km. Many kimberlites are emplaced as subsurface cylindrical-to-conical pipes and associated sills and dykes. Surficial volcanic deposits of kimberlite are rare. Although kimberlite magmas have distinctive chemical and physical properties, their eruption styles, intensities and durations are similar to conventional volcanoes. Rates of magma ascent and transport through the cratonic lithosphere are informed by mantle cargo entrained by kimberlite, by the geometries of kimberlite dykes exposed in diamond mines, and by laboratory-based studies of dyke mechanics. Outstanding questions concern the mechanisms that trigger and control the rates of kimberlite magmatism.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Kimberlite Volcanology: Transport, Ascent, and Eruption Read More »

Dating Kimberlites: Methods and Emplacement Patterns Through Time

Key to deciphering the origin and tectonic setting of kimberlite magmatism is an accurate understanding of when they formed. Although determining absolute emplacement ages for kimberlites is challenging, recent methodological advances have contributed to a current database of >1,000 precisely dated kimberlite occurrences. Several profound findings emerge from kimberlite geochronology: kimberlites were absent in the first half of Earth history; most kimberlites were emplaced during the Mesozoic; kimberlite magma formation may be triggered by a variety of Earth processes (deep mantle plumes, subduction of oceanic lithosphere, continental rifting); and enhanced periods of kimberlite magmatism coincide with supercontinent breakup.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Dating Kimberlites: Methods and Emplacement Patterns Through Time Read More »

Kimberlites from Source to Surface: Insights from Experiments

High-pressure experiments are unconvincing in explaining kimberlites as direct melts of carbonated peridotite because the appropriate minerals do not coexist stably at the kimberlite liquidus. High-pressure melts of peridotite with CO2 and H2O have compositions similar to kimberlites only at pressures where conditions are insufficiently oxidizing to stabilize CO2: they do not replicate the high K2O/Na2O of kimberlites. Kimberlite melts may begin their ascent at ≈300 km depth in reduced conditions as melts rich in MgO and SiO2 and poor in Na2O. These melts interact with modified, oxidized zones at the base of cratons where they gain CO2, CaO, H2O, and K2O and lose SiO2. Decreasing CO2 solubility at low pressures facilitates the incorporation of xenocrystic olivine, resulting in kimberlites’ characteristically high MgO/CaO.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Kimberlites from Source to Surface: Insights from Experiments Read More »

Kimberlites as Geochemical Probes of Earth’s Mantle

Kimberlites are ultrabasic, Si-undersaturated, low Al, low Na rocks rich in CO2 and H2O. The distinctive geochemical character of kimberlite is strongly influenced by the nature of the local underlying lithospheric mantle. Despite this, incompatible trace element ratios and radiogenic isotope characteristics of kimberlites, filtered for the effects of crustal contamination and alteration, closely resemble rocks derived from the deeper, more primitive, convecting mantle. This suggests that the ultimate magma source is sub-lithospheric. Although the composition of primitive kimberlite melt remains unresolved, kimberlites are likely derived from the convecting mantle, with possible source regions ranging from just below the lithosphere, through the transition zone, to the core–mantle boundary.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Kimberlites as Geochemical Probes of Earth’s Mantle Read More »

What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites

Hypabyssal kimberlites are subvolcanic intrusive rocks crystallised from mantle-derived magmas poor in SiO2 and rich in CO2 and H2O. They are complex, hybrid rocks containing significant amounts of mantle-derived fragments, primarily olivine with rare diamonds, set in a matrix of essentially magmatic origin. Unambiguous identification of kimberlites requires careful petrographic examination combined with mineral compositional analyses. Melt inclusion studies have shown that kimberlite melts contain higher alkali concentrations than previously thought but have not clarified the ultimate origin of these melts. Because of the hybrid nature of kimberlites and their common hydrothermal alteration by fluids of controversial origin (magmatic and/or crustal), the composition of primary kimberlite melts remains unknown.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites Read More »

Kimberlites: From Deep Earth to Diamond Mines

Kimberlites are rare, enigmatic, low-volume igneous rocks. They are highly enriched in magnesium, volatiles (CO2 and H2O) and incompatible trace elements and are thought to be the most deeply derived (>150 km) magmatic rocks on Earth. Kimberlites occur in ancient and thick continental lithosphere, forming intrusive sheets and composite pipes, commonly in clusters. Despite their rarity, kimberlites have attracted considerable attention because they entrain not only abundant mantle fragments but also diamonds, which can provide a uniquely rich picture of the deep Earth. This issue summarises current thinking on kimberlite petrology, geochemistry, and volcanology and outlines the outstanding questions on the genesis of kimberlites and associated diamond mines.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Kimberlites: From Deep Earth to Diamond Mines Read More »

Hydrogen, Hydrocarbons, and Habitability Across the Solar System

The ingredients to make an environment habitable (e.g., liquid water, chemical disequilibria, and organic molecules) are found throughout the solar system. Liquid water has existed transiently on some bodies and persistently as oceans on others. Molecular hydrogen occurs in a plume on Saturn’s moon Enceladus. It can drive the reduction of CO2 to release energy. Methane has been observed in many places: from the dusty plains of Mars, to the great lakes of the Saturnian moon Titan, to the glacial wonderland that is Pluto. Organic molecules are common where volatile elements and reducing conditions prevail: these organic molecules can have diverse origins. Future space missions will attempt to illuminate the “organic solar system” and the role played by possible extraterrestrial life.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Hydrogen, Hydrocarbons, and Habitability Across the Solar System Read More »

Abiotic Hydrogen and Methane: Fuels for Life

Geologically produced (abiotic) molecular hydrogen and methane could be widely utilized by microbial communities in surface and subsurface environments. These microbial communities can, therefore, have a potentially significant impact on the net emissions of H2 and CH4 to Earth’s ocean and atmosphere. Abiotic H2 and CH4 could enable microbial communities to exist in rock-hosted environments and hydrothermal systems with little or no input from photosynthetic carbon fixation, making these communities potential analogs for the earliest metabolisms on Earth (or other planetary bodies). The possible dependence of rock-hosted ecosystems on H2 and CH4 should factor into current and future plans for engineering the subsurface for storage of these compounds as energy fuels.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Abiotic Hydrogen and Methane: Fuels for Life Read More »

Scroll to Top