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1. Methodology for a unified dislocation creep flow law in Eq. 4 

 
 

Creep of olivine and its maze of the flow laws: Experimental high-temperature creep of 

metal and ceramics is successfully described by a semi-empirical power law (e.g., Frost and 

Ashby, 1977), 

 

𝜀ℎ̇𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = A′ 𝑑−𝑚𝜎𝑛exp (
−𝐸+PV

𝑅𝑇
)                                         eq. S1 

 

where T is the absolute temperature in Kelvin, A’ is a material parameter, d the grain size and 

m its exponent,  is the differential stress (usually in MPa), n the stress exponent, E the 

activation energy, R the gas constant, P the pressure and V the activation volume. This 

formalism was very successful to fit laboratory data for creep of olivine for T > 0.7Tm at both 

1 atm and moderate confining pressure (e.g., 0.3 GPa, see for example Bai and Kohlstedt, 

1992a; Mei and Kohlstedt, 2000; Faul et al., 2011, see Hirth and Kohlstedt, 2003; or Kohlstedt, 

2006 for review articles). The effect of many additional parameters can be implemented in this 

power flow law, such as water fugacity 𝑓𝐻2𝑂 as shown in Eq 2. in the main text (see also Bai 

and Kohlstedt, 1992b, 1993). Here, 𝑓𝐻2𝑂  is a proxy for the concentration of hydrogen 

incorporated into the olivine lattice under saturation conditions (at high pressure and high 

temperature, see Kohlstedt et al., 1996 for the original solubility law, and Férot and Bolfan-

Casanova, 2012 for the most recent study). Other extensive parameters impacting creep of 

olivine are the redox-state, oxygen fugacity 𝑓𝑂2
 (e.g., Bai and Kohlstedt, 1992a; Cline et al., 

2018), iron content (e.g., Zhao et al., 2009; 2018), titanium content (e.g., Faul et al., 2016), 
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silica activity (e.g., Bai and Kohlstedt, 1992a), basaltic melt fraction (e.g., Holtzman et al. 

2003a, 2003b; Zimmerman and Kohlstedt, 2004) or even fraction of molten metals (e.g., 

Hustoft et al., 2006).  

A more comprehensive power flow law may be defined as follows (without pressure-

dependency) (Kohlstedt et al., 2000): 

 

𝜀ℎ̇𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = A′′𝑑−𝑚  𝑓𝐻2𝑂
𝑟 𝑓𝑂2

𝑠𝑎𝑆𝑖𝑂2
𝑤  𝑋𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑖𝑒𝑠

𝑡  𝜎𝑛  exp (αφ) exp (
−𝐸

𝑅𝑇
)           eq. S2 

 

where A’ is a material parameter, m, r, s, w, and t are exponents for each additional parameter, 

determined by data fitting,  is the volume fraction of melt. The  parameter defines the 

dependence of strain rate on melt fraction (also called the melt fraction factor), which is a 

function of T, P, and melt chemical composition and other hidden parameters such as the 

wetting properties of the studied melt or the grain boundary contiguity (e.g., Takei, 1998). This 

formulation has the advantage to be versatile, but also holds several disadvantages: (1) it 

requires a massive number of experiments to obtain a reliable fit to the data; (2) one must 

assume that a single creep mechanism accommodates most deformation in all actively 

deformed zones, and (3) it implies that the dominant mechanisms at laboratory strain rates 

remain the same at the much (ten orders of magnitude) slower strain rates relevant for 

geodynamics, which is a critical assumption.   

The above power law formalism generally satisfies simple systems at high temperature, 

but at the stresses needed to deform olivine below 0.7Tm at laboratory strain rates (10-6-10-4 s-

1), the power law breaks down and an exponential law formalism is generally used to fit the 

data (e.g., Evans and Goetze, 1979).  

 

𝜀�̇�𝑜𝑤 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑢𝑟𝑒 = B exp (
−𝐸

𝑅𝑇
(1 − (

𝜎

𝜎𝑃𝑒𝑖𝑒𝑟𝑙𝑠
)

p
)

q

)                              eq. S3 

 

where B is a material parameter (different than A, A’ or A’’), P is the Peierls’ stress (often in 

GPa, as for  in this formulation). Peierls originally represents the ‘lattice friction’, i.e., the stress 

needed to move a dislocation within a plane of atoms at 0 K as defined by Peierls (1940) and 

modified by Nabarro (1947), but it is used here as a proxy of the general resistance to dislocation 

glide at 0 K. The values of p and q are determined empirically and are generally bracketed by 

0  p  1 and 1  q  2 (Frost and Ashby, 1982; Kocks et al., 1975, p. 142).  Although the p 
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and q exponents are fundamental in this flow law, they are usually fixed prior to data fitting 

(Evans and Goetze, 1979; Raterron et al. 2004 ; Katayama and Karato , 2008 ; Mei et al., 2010, 

Demouchy et al., 2013; Hansen et al., 2019). 

 It is traditionally proposed that the transition between the exponential and power law 

behaviors is associated with the onset of dislocation climb (Evans and Goetze, 1979). The 

impact of dislocation climb is difficult to extract and quantify in laboratory-based experiments, 

but it may be easily controlled in numerical modelling approach based on 2.5-dimensional 

dislocation dynamics simulations. This question was expressely targeted in three recent studies 

(Boioli et al., 2015a, 2015b; Gouriet et al., 2019), which analyzed the high temperature and low 

temperature deformation of single crystals of iron-free and hydrogen-free olivine. Comparison 

between these studies showed continuity between the deformation two regimes (high 

temperature and low temperature), implying that the use of two separated semi-empirical 

rheological laws (Eq. S1 and Eq. S3) to describe the creep of olivine was only motivated by 

convenience and is in fact not imposed by theoretical needs. The low and high temperature 

behaviors can then be unified into a single flow law for dislocation creep in olivine, directedly 

calculated for temperatures and strain rates relevant for the Earth upper mantle (800–1700 K 

and stress between 50 and 500 MPa, see Gouriet et al. 2019): 

 

𝜀�̇�𝑛𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑒𝑒𝑝 = C (
𝜎

𝜇
)

n
exp (

−𝐸

𝑅𝑇
(1 − (

𝜎

𝜎𝑃𝑒𝑖𝑒𝑟𝑙𝑠
)

p
)

q

)                              eq. S4 

 

where C is a material parameter (different than A, A’, A’’ or B), and  is shear modulus in GPa. 

The numerical results from Gouriet et al. (2019) yield:  

 

𝜀�̇�𝑛𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑒𝑒𝑝 = 1.7 × 1016 (
𝜎

𝜇
)

2.95
exp (

−460×103

𝑅𝑇
(1 − (

𝜎(𝑀𝑃𝑎)

2000(𝑀𝑃𝑎)
)

1.52
)

2

)  eq. S5 

 

This unified flow law reproduces well the long-term upper mantle viscoelastoplastic 

behavior and includes the power law breakdown, which occurs for stresses higher than 200 

MPa. Comparison of the strength envelope for a continental plate predicted using this unified 

flow with typical set of (power and exponential) flow laws used to model olivine ductile 

deformation is shown in Figure S1. As explained in the main text, this unified formulation 

yields a non-linear behavior, with the strongest non-linearity (stress dependence) at low 

temperature, consistent with observations in nature, where the strongest strain localization is 
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associated with low-temperature/high stresses plastic deformation (in olivine rich-rocks, but 

also in crustal rocks). We emphasize that the exponential form is not strictly required from 

theoretical reasons, and for implementation in geodynamical models where stress should be 

expressed as a function of strain rate and temperature, other mathematical formulations may be 

proposed to fit the dislocation dynamics modelling data such as a hyperbolic tangent (tanh) 

(e.g., Garel et al., 2020; Garel and Thoraval, 2021). 

 

 

Figure S1. Strength envelope model for a continental lithosphere deforming at a constant strain 

rate of 10-14 s-1. The geotherm is plotted in grey. Frictional sliding law is from Byerlee (1979). 

Goetze’s criterion was calculated with a density of 2700 kg.m-3 for the crust. Flow laws for dry 

quartzite (Gleason and Tullis, 1994) and dry diabase (Mackwell et al., 1998) are used for the 

upper and lower crust, respectively. Creep of olivine is shown for a variety of flow laws: low-

temperature (LT) flow law from Boioli et al. (2015b); Demouchy et al., (2013), Evans and 

Goezte (1978) as well as ‘dry’ and ‘wet’ high-temperature (HT) flow laws from Hirth and 
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Kohlstedt (2003), ‘dry’ HT flow laws from Faul et al., (2011) and Chopra and Paterson (1984), 

and the unified flow law from Gouriet et al. (2019). We also added the flow laws (dry and wet) 

from Tielke et al. (2017), which are further discussed in the online supplement section 3. 

 

1. Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. 

Physics and Chemistry of Minerals 10: 27–37 
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2. Data source and methodology for Figure 2 

 

Figure 2 reported hydrogen concentrations in olivine from peridotites obtained by 

Fourier transform infrared spectroscopy (FTIR). This analytical method is not an absolute 

method of quantification; measured absorbances need to be calibrated to obtain hydrogen 

concentrations in nominally anhydrous minerals (Demouchy and Bolfan-Casanova, 2016; 

Rossman, 2006). Two different types of calibrations are used to build Fig. 2: (i) the empirical 

frequency-dependent calibration of Paterson (1982) for unpolarized infrared data and (ii) a 

mineral-dependent calibration (Withers et al., 2012 for olivine only). These calibrations result 

in a detection limit of about 1 ppm wt H2O for a 1-mm-thick olivine sample (e.g., Denis et al., 

2015). The estimated error from the empirical calibration in the resulting H concentration in 

olivine is around 30 % (Paterson, 1982); it is lower (10-15 %) for the olivine calibration from 

Withers et al. (2012). The frequency-dependent calibration of Paterson (1982) is given as 

 

𝐶𝑂𝐻 =
χ𝑖

150ζ 
 ∫

k(υ)

3780−υ
𝑑υ.         eq.7 

 

where the following mineral specific factors χi (Paterson, 1982) were used based on the 

chemical composition in major elements of the mineral i (see method of calculation in 

Demouchy and Bolfan-Casanova, 2016): χol = 2663 ppm wt H2O for Fo89.2 , ζ is the orientation 

factor, which equals 1/3 for unpolarized infrared analyses (Paterson, 1982). The absorption 

coefficient k(υ) is a function of the wavenumber υ. Integration of the spectrum was performed 

between 3620 and 2900 cm–1 for olivine. Multiplying the average concentrations obtained by 

unpolarized infrared by a factor three yields estimates comparable to the sum of concentrations 

obtained by polarized infrared measurements along the three main crystallographic axes (see 

Fig. S1 in Férot and Bolfan-Casanova, 2012). Note that the calibration of Bell et al., (2003) was 

found to overestimate hydrogen concentrations in olivine (see Withers et al., 2012 for details). 

This calibration was originally used in several articles for the compilation, these hydrogen 

concentrations were then converted for comparison purpose in Fig. 2. One question remains 

regarding the current database of hydrogen distribution in mantle olivine. Hydrogen 

diffusivities quantified using laboratory measurements yield fast diffusion coefficients (e.g., 

Mackwell and Kohlstedt, 1990; Demouchy and Mackwell, 2006), implying a very elusive 

storage of hydrogen at depth with time. These data are somehow incompatible with a persistent 

residual and non-negligible hydrogen content in peridotitic olivine (Fig. 2), which increases 
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with depth. The atomic-scale storage mechanism responsible for the discrepancy is not yet fully 

solved despite several attempts (e.g., Thoraval et al., 2018: Demouchy et al., 2016: Padron-

Navarta and Hermann, 2017). This question requires further experimental studies as well as 

numerical investigation. 

 

Figure S2. Hydrogen concentrations in olivine (in ppm wt H2O) as a function of depth. The 

database is a compilation from Baptiste et al., 2012; Bell et al., 2004; Demouchy and Bolfan-

Casanova 2016; Demouchy, 2004; Denis et al., 2013, 2015; Doucet et al., 2014; Falus et al., 

2007; Grant et al., 2007; Hui et al., 2015; Kamenetsky et al., 2009, Li et al., 2008; Novella et 

al., 2015; Peslier, 2010; Peslier, et al., 2007, 2008; 2010; Satsukawa et al., 2015; Soustelle et 

al., 2010, 2013; Yang et al., 2008), updated with the most recent studies (Ashley et al., 2020; 

Demouchy and Tommasi, 2021; Demouchy et al., 2019; Doucet et al., 2020; Kilgore et al., 

2018, 2020; Kolenichenko et al., 2017; Pattnaik et al., 2021; Peslier et al., 2015; Schaeffer et 

al., 2019, Wang et al., 2013 ; Yu et al., 2019). 
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3. Methodology for Figure 3 

 Figure 3 was built using the high-temperature and low-temperature flow laws reported 

by Tielke et al. (2017, their figure 10). The ‘wet’ flow law corresponds to the equation 16 in 

Tielke et al. (2017) for olivine single crystals deformed in axial compression at 45° to the [100] 

and [001] axes, as to activate glide of dislocations with both [100] and [001] Burgers vectors. 

The dry high-temperature power flow is from Bai et al. (1991) and the dry low-temperature 

(exponential) flow law corresponds to equation 17 in Tielke et al. (2017). Note that the effect 

of hydrogen on the rheology of olivine is weak (well below a factor 10) at low temperatures ( 

<1100 °C) according to this recent experimental study, confirming other experimental studies 

on both single crystals and polycrystalline olivine (Demouchy et al., 2012, Girard et al., 2013). 

First the strain rates as a function of temperature for a fixed stress of 100 MPa are calculated, 

then they are extrapolated to slower strain rates (10-16-10-14 Pas) and down to a stress of 10 

MPa, which is an estimated relevant for the base of the lithosphere, as illustrated in Figure S3a. 

Then, following the same flow laws, stresses are calculated for fixed strain rates relevant for 

the mantle lithosphere as shown in Figure S3b. Subsequently effective viscosities, defined as 

as, 

𝜂𝑒𝑓𝑓 =
𝜎

�̇�
             eq. S6 

were calculated for each temperature (data points in Figure S3b) and the ratio of the two 

effective viscosities (wet and dry) are finally calculated and displayed in Figure 3 (in the main 

text).  

The hydrogen concentration was not adjusted (increased nor decreased) as it already 

corresponds to an appropriate water content for a spinel-bearing mantle lithosphere as shown 

by Figure 2 in the main text (see also Demouchy and Bolfan-Casanova, 2016).  
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Nevertheless, the calculation above is based on experimental data obtained on olivine single-

crystals only. The impact of hydrogen stored at grain boundaries on the rheological properties 

of coarse-grained peridotites still need to be assessed (see Demouchy et al., 2012).  

We recall below the equation used for the calculation for oxygen fugacity along the Ni-

NiO buffer needed for the dry power flow law from Bai et al. (1991): 

fO2= 10(12.78-2.5073 (10000/(T))  –  (1.1  log(10000/(10000/(T))))  +  (0.450300 ((10000/(T))/10000))  +  

(0.025300/1000),            eq. S7 

where T is the absolute temperature in K. 

The thermal lithosphere-asthenosphere boundary (LAB) indicated in Figure 3 in the 

main text is from Garel et al (2020) and Garel and Thoraval (2021). The large range of 

temperature covers the LAB in a cooling oceanic lithosphere for a large range of ages (see 

Garel and Thoraval (2021), for discussion, in particular their Figure 7). 

 

Figure S3: (a) Strain rates as a function of temperature under stress of 100 MPa and 10 MPa 

for dry and hydrogen-bearing single crystals of olivine deformed in compression. Flow laws 

are from Tielke et al. (2017) and Bai et al. (1991). The area in pale pink represents the stress-

strain rates field covered by experiments in high temperature (1-atm) creep apparatus (Bai et 

al., 1991) and the area in pink by Paterson press experiments (e.g., Demouchy et al., 2012; 

Tielke et al., 2017). The area in pale green represents the field covered by the asthenosphere 

mantle and in green by the lithospheric mantle, showing the extrapolation of laboratory strain 

rates to mantle conditions. 
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5. Data source for Figure 4  

 

 
 

 

Figure S4. Extractions of the global teleseismic shear-wave splitting database (initiated by 

Barruol et al. 2009) illustrating seismic anisotropy patterns at the plate scale. Seismic anisotropy 

is integrated along vertical paths between the core-mantle boundary and the station, with a 

maximum contribution from the upper mantle. Direction of the bars indicates the direction of 

polarization of the fast quasi-shear wave and length of the bars shows the delay time between 

the fast and slow arrivals. This worldwide map shows the extend of the data coverage, but blur 

the visualization of the mantle flow. Detailed maps are then required, such as the one display 

in Figure 4. For the references for the plotted splitting data see  

http://splitting.gm.univ-montp2.fr/DB/public/splittingDB_ref.txt. 
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